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ABSTRACT
Hashing methods have been extensively used so as to resolve im-
age and video retrieval problems due to their computation and
storage efficiency. During the recent years, following the impres-
sive performance of deep learning methods in various computer
vision tasks, deep hashing methods have powerfully emerged in
the field of large scale image and video retrieval, accomplishing
superior performance over the previous approaches. In this paper,
a novel regularization framework is proposed, on the top of Deep
Cauchy Hashing method, for improving the performance of the pro-
duced hash codes towards Hamming space retrieval. The proposed
framework includes two regularization approaches, namely Class-
Agnostic regularizer and Class-Aware regularizer. The experimental
evaluation on two retrieval datasets validates the efficiency of both
the proposed approaches in improving the retrieval performance,
outperforming previous state-of-the-art approaches.
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1 INTRODUCTION
Image Retrieval (IR) refers to the task of obtaining relevant images
from a large collection given a query image. IR is a vivid research
field since 1990s. Earlier works focus on primitive features describ-
ing the image content such as texture, color, etc., while more recent
works have striven towards finding semantically richer represen-
tations, such as [18]. Motivated by the successful performance of
Deep learning algorithms [5] and especially deep Convolutional
Neural Networks (CNN) in a wide range of computer vision tasks
[4, 24], deep CNNs introduced to image retrieval field [22]. How-
ever, despite their outstanding performance, deep learning based
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techniques, still suffer from major limitations that restrict their effi-
ciency. That is, they are computationally and memory demanding.
During the recent years, due to the explosive growth of available
images and videos on the web, hashing techniques have been es-
tablished as an effective solution for image and video retrieval
tasks [26]. Hashing methods project the high dimensional feature
representations of images into low dimensional binary codes, cir-
cumventing the storage and memory limitations, while they are
also computationally efficient since computing Hamming distance
is of low complexity. Earlier hashing works focus on data indepen-
dent methods, e.g. Locality Sensitive Hashing (LSH) [12]. However,
these methods generally require long hash codes to achieve satisfac-
tory results, while the semantic information of data is also ignored.
To this end, recent works focus on data dependent methods (also
known as learning to hash), where hash functions are learned from
the data, accomplishing superior performance over the data inde-
pendent ones [11] utilizing shorter binary codes.
Recently, following the success of Deep Learning algorithms [5]
in a wide spectrum of computer vision tasks, deep learning based
hashing methods were introduced in the field of image retrieval,
achieving superior performance over the previous approaches, by
proposing to learn simultaneously the feature representations and
the hash codes [14]. Subsequently, since previous deep hashing
methods focus on maximizing the retrieval performance based on
linear hash codes which remains costly despite of the hash codes,
Deep Cauchy Hashing (DCH), [1], turns to hamming space retrieval
[17], where instead of linear scan as in the existing hashing meth-
ods, relevant images to a query image are retrieved within a given
Hamming radius using hash table lookups.
In this paper, we propose a regularization framework on the top of
DCH method for improving the performance of binary hash codes
towards Hamming space retrieval. Generally, regularization tech-
niques have been usedwidely in order to improve the generalization
ability of deep learning models. Common regularization techniques
include L1, L2 regularization which penalize large weights during
the network’s optimization, and Dropout where for each training
sample a randomly selected subset of the activations is zeroed in
each epoch. Besides, multitask-learning [3] has been proposed as a
way to improve the generalization ability of a model.

The proposed regularization framework includes two approaches
namely Class-Agnostic regularizer and Class-Aware regularizer. As
the main learning objective in DCH penalizes on similar image pairs
with Hamming distance larger than the given radius threshold, both
the proposed regularizers induce the hash code representations to
shrink, while the Class-Aware regularizer also preserves discrimi-
nant power.
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The rest of the paper is organized as follows. Section 2 discusses
relevant hashing techniques towards image retrieval. The proposed
regularization techniques are described in Section 3. Subsequently,
the experiments conducted in order to validate the proposedmethod
are presented in Section 4. Finally, conclusions are drawn in Section
5.

2 PREVIOUS WORK
In this Section we briefly survey recent hashing techniques for
the problem of image retrieval. As previously mentioned, hashing
methods can be divided into two broad categories, that is data
independent and data depended methods. In this Section we focus
on data-depended hashing methods, since they are more accurate
and require smaller hash codes than the data-independent.

Several unsupervised hashing methods have been proposed in
the recent literature. Common strategies include graph embedding
[27], and reconstruction error minimization [9]. Semi-supervised
methods have also been recently proposed. For example, a semi-
supervised hashing framework, which minimizes the empirical
error over the labeled pairs and prevents overfitting utilizing an
information-theoretic regularizer over both labeled and unlabeled
data is proposed in [25].

Several supervised hashing methods have also recently been
proposed. A method that balances the discrimination and learnabil-
ity of hash codes is presented in [19]. That is, the method learns
codes that maximize separability of classes unless there is strong vi-
sual evidence against this. Subsequently, a method that uses Linear
Discriminant Analysis to reduce the covariance of similar feature
representations while increasing the covariance between dissimilar
ones is presented in [21]. Finally, other supervised hashing methods
propose to generate nonlinear or discrete hash codes by minimiz-
ing the Hamming distances across similar pairs of data points and
maximizing the Hamming distances across dissimilar pairs, [20].

Recently, deep learning based hashing methods introduced in
the field of image retrieval accomplishing superior performance
over previous approaches. Convolutional Neural Network Hashing
(CNNH) [28] learns approximate hash codes and then uses them to
learn a hash function in a two step approach, while Deep Neural
Network Hashing (DNNH) [14] improves on CNNH by learning
features and hash functions simultaneously effectively improving
each other in the process. Deep Hashing Network (DHN) [30] is the
first method that both preserves semantic similarities and manages
the quantization error by using cross-entropy loss, whilst Deep
Supervised Hashing [15] improves on that by using a loss function
that maximizes discriminability of the output to approximate dis-
crete values. Hashnet [2] is another architecture for deep learning
to hash by continuation method from imbalanced similarity data.
Subsequently, a method that proposes to learn hash functions by
optimizing tie-aware ranking metrics, is presented in [10].
Subsequently, DHA [29] proposes to scale and shift the loss function
avoiding in this way the saturation of gradients during training,
while simultaneously to adjust the loss so as to adapt to different
levels of similarities of data. Finally, Deep Cauchy Hashing (DCH)
[1] produces compact and concentrated hash codes for efficient
Hamming space retrieval using a pairwise cross-entropy loss based

on Cauchy distribution. In this paper, we propose a regulariza-
tion framework on the top of the DCH method for improving the
performance of the method towards Hamming space retrieval.

3 PROPOSED METHOD
In this work, we propose a novel regularization technique on the
top of Deep Cauchy Hashing method. A brief description of DCH
method follows below.

3.1 Deep Cauchy Hashing Overview
The utilized deep architecture is based on AlexNet model [13] which
originally contains five convolutional layers and three fully con-
nected layers. The last fully connected layer of AlexNet is replaced
by a new hash layer with𝐾 hidden units, transforming the represen-
tation of the penultimate fully connected layer into 𝐾-dimensional
continuous output 𝒛𝑖 ∈ R𝐾 for each input image 𝒙𝑖 . Hash code is
obtained through sign thresholding ℎ𝑖 = sgn(𝑧𝑖 ). The hyperbolic
tangent (tanh) function is utilized to squash 𝑧𝑖 into [−1, 1], in or-
der to overcome the shortcoming of sign function pertaining to
ill-posed gradient. Furthermore two loss functions are introduced,
one to preserve pairwise similarity and another to correct the quan-
tization error of the above approximation. Both of them are based
on the Cauchy Distribution and derived in the Maximum a Pos-
teriori estimation framework. Two loss functions are used based
on the long-tailed Cauchy distribution. That is, a pairwise Cauchy
cross-entropy loss and a pointwise Cauchy quantization loss. Both
the utilized losses derive in the Maximum a Posteriori estimation
framework.
Given a training set of 𝑁 images, each image is represented as
a 𝐷-dimensional vector 𝒙𝑖 ∈ R𝐷 , and for each pair of images 𝒙𝑖
and 𝒙 𝑗 , a similarity label 𝑠𝑖 𝑗 ∈ S is produced, where 𝑠𝑖 𝑗 = 1 in-
dicates similar pairs, while 𝑠𝑖 𝑗 = 0 indicated dissimilar ones. The
logarithm Maximimum a Posteriori estimation of the hash codes
𝑯 = [𝒉1, . . . , 𝒉𝑁 ] is defined as:

log 𝑃 (𝑯 |𝑆) ∝ log 𝑃 (𝑆 |𝑯 )𝑃 (𝑯 ) =∑︁
𝑠𝑖 𝑗 ∈𝑆

𝑤𝑖 𝑗 log 𝑃 (𝑠𝑖 𝑗 |𝒉𝑖 ,𝒉 𝑗 ) +
𝑁∑︁
𝑖=1

log 𝑃 (𝒉𝑖 )
(1)

where 𝑃 (𝑆 |𝑯 ) = Π𝑠𝑖 𝑗 ∈𝑆 [𝑃 (𝑠𝑖 𝑗 |𝒉𝑖 , 𝒉 𝑗 )]𝑤𝑖 𝑗 is the weighted likeli-
hood function, and𝑤𝑖 𝑗 is theweight for each training pair (𝒙𝑖 , 𝒙 𝑗 , 𝑠𝑖 𝑗 ).
In order toweight the image pairs according to theirmiss-classification
importance,𝑤𝑖 𝑗 is defined as

𝑤𝑖 𝑗 =

{
|𝑆 |/|𝑆1 |, 𝑠𝑖 𝑗 = 1
|𝑆 |/|𝑆0 |, 𝑠𝑖 𝑗 = 0 (2)

where 𝑆1 = {𝑠𝑖 𝑗 ∈ 𝑆 : 𝑠𝑖 𝑗 = 1} is the set of similar pairs and
𝑆0 = {𝑠𝑖 𝑗 ∈ 𝑆 : 𝑠𝑖 𝑗 = 0} is the set of dissimilar pairs and
𝑃 (𝑠𝑖 𝑗 |𝒉𝑖 , 𝒉 𝑗 ) is the conditional probability of similarity label 𝑠𝑖 𝑗
given a pair of hash codes 𝒉𝑖 and 𝒉 𝑗 ,which can be naturally defined
by the Bernoulli distribution,

𝑃 ( 𝑠𝑖 𝑗 | 𝒉𝑖 , 𝒉 𝑗 ) =
{
𝜎 (d (𝒉𝑖 , 𝒉 𝑗 )) , 𝑠𝑖 𝑗 = 1
1 − 𝜎 (d (𝒉𝑖 , 𝒉 𝑗 )) , 𝑠𝑖 𝑗 = 0

= 𝜎 (d(𝒉𝑖 , 𝒉 𝑗 ))𝑠𝑖 𝑗 (1 − 𝜎 (d(𝒉𝑖 , 𝒉 𝑗 )))1−𝑠𝑖 𝑗 ,
(3)
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where d(𝒉𝑖 , 𝒉 𝑗 ) is used to denote the Hamming distance between
hash codes 𝒉𝑖 and 𝒉 𝑗 , and 𝜎 a well-defined probability function
based on the Cauchy distribution. That is,

𝜎 (d(ℎ𝑖 , ℎ 𝑗 )) =
𝛾

𝛾 + d(𝒉𝑖 , 𝒉 𝑗 )
, (4)

where 𝛾 is the scale parameter of the Cauchy distribution. In ad-
dition, in order to control the quantization error a prior for each
individual hash code 𝒉𝑖 is proposed:

𝑃 (𝒉𝑖 ) =
𝛾

𝛾 + d( |𝒉𝑖 |, 1)
, (5)

where 1 ∈ R𝐾 is the vector of ones. Since continuous relaxation is
used, Hamming distance is approximated as: d(𝒉𝑖 , 𝒉 𝑗 ) =

𝐾

2
(1 −

cos(𝒉𝑖 ,𝒉 𝑗 ).
The final optimization problem is formulated as: min

⊖
𝐿 + _𝑄 (6),

where _ is a hyper-parameter to trade-off the Cauchy cross-entropy
loss 𝐿 and the Cauchy quantization loss 𝑄 , and Θ denotes the set
of network parameters to be optimized. Specifically, the Cauchy
cross-entropy loss 𝐿 is formulated as:

𝐿 =
∑︁
𝑠𝑖 𝑗 ∈𝑆

𝑤𝑖 𝑗 (𝑠𝑖 𝑗 log
d(𝒉𝑖 ,𝒉 𝑗 )

𝛾
+ log(1 + 𝛾

d(𝒉𝑖 ,𝒉 𝑗 )
)), (7)

and similarly, the Cauchy quantization loss is derived as:

𝑄 =

𝑁∑︁
𝑖=1

log(1 + d( |𝒉𝑖 |, 1)
𝛾

), (8)

where 𝑑 (., .) corresponds either to the Hamming distance between
the hash codes or to the normalized Euclidean distance between
the continuous codes.

3.2 Regularization Framework
In this paper, two regularizers, that is the Class-Agnostic regularizer
and the Class-Aware regularizer is proposed to be attached to the
last layer of the network, that is the hash layer. The output vectors
𝑯 = [𝒉1, · · · ,𝒉𝑁 ] of the last layer represent the continuous hash
code representations bounded by the tanh function for each of the
total number of𝑁 image samples. Each of the proposed regularizers,
as it is shown in the subsequent subsections, defines a distinct target,
based on the utilization of the class label information. Then the
new optimization problem is formulated as:min⊖ 𝐿 + _𝑄 + _𝑟𝑅 (9),
where 𝑅 defines the additional regularization loss, and _𝑟 is a hyper-
parameter to trade-off the Regularization loss 𝑅 with both Cauchy
cross-entropy loss 𝐿 and the Cauchy quantization loss 𝑄 .

3.2.1 Class-Agnostic Regularizer. In the Class-Agnostic regular-
ization approach, we apply an additional objective which aims at
minimizing the variance among the hash codes. That is, considering
the mini-batch training procedure, we propose to regularize the
main learning objective which significantly penalizes on similar
image pairs with Hamming distance larger than the given radius
threshold, by forcing the hash codes come closer to their batch cen-
ter. The Class-Agnostic regularizer is rooted in the radius-margin
based SVM. That is, according to [6, 7] the performance of the max
margin methods in classification, depends not only to the margin
between positive and negative samples, but also to the radius of
the enclosing ball of all samples. Thus, it has been shown [23], that

as the main objective aims at distinguishing the training samples,
it is useful to attach a regularizer which aims at at shrinking the
radius of the minimum enclosing ball of all the training samples’
representations.
Thus, considering 𝑁 images and their continuous hash representa-
tions 𝐻 = [𝒉1, · · · ,𝒉𝑁 ] the regularization objective is formulated
as: 𝑅 = 1

𝑁

∑𝑁
𝑖=1 | |h𝑖 − 𝝁𝑏 | |22, where 𝝁𝑏 = 1

𝑁

∑𝑁
𝑖=1 h𝑖 .

3.2.2 Class-Aware Regularizer. In the Class-Aware regularization
approach, we apply an additional objective which aims at best sepa-
rating the hash codes belonging to different classes producing more
discriminative hash codes. We draw inspiration from the Linear
Discriminant Analysis (LDA) algorithm [8], that aims at best sepa-
rating training samples belonging to different classes, by projecting
them into a new low-dimensional space, so as the between-class
separability is maximized, while the within-class variability is min-
imized. Thus, considering that the main learning objective that
penalizes on similar image pairs with Hamming distance larger
than the given radius threshold preserves the between-class separa-
bility, the proposed objective encourages hash codes belonging to
the same class to become more compact by coming closer to their
class centroid.
Thus, considering 𝑁 images and their continuous hash represen-
tations 𝐻 = [𝒉1, · · · ,𝒉𝑁 ], and denoting as C𝑖 the set of hash
codes of images belonging to the same class to the image with
hash code 𝒉𝑖 , the regularization objective is formulated as: 𝑅 =
1
𝑁

∑𝑁
𝑖=1 | |h𝑖 − 𝝁𝑖𝑐 | |22, where 𝝁

𝑖
𝑐 =

1
|C𝑖 |

∑
𝑗 h𝑗 .

4 EXPERIMENTS
In order to evaluate the proposed regularization framework we
conduct experiments on two image retrieval datasets, that is CIFAR-
10, and MS-COCO. CIFAR-10 which contains 60000, 32 × 32 color
images divided in 10 classes. The training set is formed using 500
images per class, while the test set is formed using 100 per class.
MS-COCO which contains 82,783 training and 40.504 validation
images, each labeled with multiple of 80 semantic concepts.

4.1 Experimental Setup
The proposed method is implemented in Tensorflow framework
and trained on an NVIDIA GeForce GTX 1080 Ti with 12 GB of
memory, as well as on an NVIDIA GeForce RTX 2080 with 8 GB of
memory. The parameter _𝑟 in eq. (9) is set to 0.025, since we have
seen that in most cases provides best performance. Throughout
this work we use Mean Average Precision (MAP) within Hamming
Radius 2 (MAP@H≤ 2) to evaluate the proposed method. We note
that we have used the same configuration as in [1] for fair compar-
isons.

4.2 Experimental Results
Experimental results for both the proposed regularizers utilizing
various code lengths, as well as comparisons against the baseline
DCH method and other state-of-the art hashing methods are pre-
sented in Table 1. The proposed Class-Agnostic regularizer is ab-
breviated as CAg, while the Class-Aware as CAw. Best results are
printed in bold.
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Table 1: Comparison against other deep hashing methods

Method MS-COCO CIFAR-10
16 bits 32 bits 48 bits 64 bits 16 bits 32 bits 48 bits 64 bits

KSH [16] 0.5797 0.5532 0.2338 0.0216 0.4368 0.4585 0.4012 0.3819
SDH [20] 0.6449 0.6766 0.5226 0.5108 0.5620 0.6428 0.6069 0.5012
CNNH [28] 0.5602 0.5685 0.5376 0.5058 0.5512 0.5468 0.5454 0.5364
DNNH [14] 0.5771 0.6023 0.5235 0.5013 0.5703 0.5985 0.6421 0.6118
DNH [30] 0.6901 0.7021 0.6685 0.5664 0.6929 0.6445 0.5835 0.5883
HashNet [2] 0.6851 0.6900 0.5589 0.5344 0.7446 0.7776 0.6399 0.6259
DCH [1] 0.7010 0.7576 0.7251 0.7013 0.7901 0.7979 0.8071 0.7936

DCH & CAg 0.7129 0.7493 0.730 0.7381 0.8004 0.8148 0.8136 0.8209
DCH & CAw 0.7106 0.7402 0.7435 0.7351 0.8036 0.8123 0.8134 0.8106

From the demonstrated results several remarks can be drawn.
First, we can see that both the Class-Agnostic and Class-Aware
regularizers improve the DCH method in all the considered cases
except for one case, that is hash code of length 32 in the MS-COCO
dataset. Furthermore, we can see that the Class-Agnostic regularizer
performs better than the Class-Aware in the most of the considered
cases. We can also see that we can achieve better improvements
with longer code lengths. Finally, we can observe that the proposed
regularizers are superior over the compared state-of-the-art deep
hashing methods, in all the considered cases except for one case.

5 CONCLUSIONS
In this paper, we proposed a regularization framework on the top
of Deep Cauchy Hashing method, for improving the performance
of the produced hash codes towards Hamming space retrieval. Two
different regularizers are proposed, based on the class label informa-
tion utilization. That is, Class-Agnostic regularizer and Class-Aware
regularizer. Experiments conducted on two image retrieval datasets,
validating the effectiveness of both the proposed regularizers in
improving the performance of the hash codes in the retrieval task,
also outperforming state-of-the-art deep hashing methods.
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