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Abstract—Deploying state-of-the-art deep learning models on
embedded systems dictates certain storage and computation
limitations. During the recent few years Knowledge Distillation
(KD) has been recognized as a prominent approach to address
this issue. That is, KD has been effectively proposed for training
fast and compact deep learning models by transferring knowledge
from more complex and powerful models. However, knowledge
distillation, in its conventional form, involves multiple stages of
training, rendering it a computationally and memory demanding
procedure. In this paper, a novel single-stage self knowledge dis-
tillation method is proposed, namely Online Subclass Knowledge
Distillation (OSKD), that aims at revealing the similarities inside
classes, so as to improve the performance of any deep neural
model in an online manner. Hence, as opposed to existing online
distillation methods, we are able to acquire further knowledge
from the model itself, without building multiple identical models
or using multiple models to teach each other, rendering the
proposed OSKD approach more efficient. The experimental
evaluation on two datasets validates that the proposed method
improves the classification performance.

I. INTRODUCTION

Deep learning models [1] have been utilized in order to
resolve a plethora of visual analysis tasks, accomplishing su-
perior performance and overthrowing prior solutions in recent
years [2]–[5]. Generally, state-of-the-art deep learning models
owe their exceptional performance to their depth and com-
plexity, significantly inhibiting their applicability on devices
with restricted computational resources, such as mobile and
embedded systems. Thus, developing compact and effective
models able to address storage and computational constraints
of autonomous systems has become a challenging task.

Substantial amount of research works have been recently
carried out towards this goal [6]. One solution constitutes in
designing models that satisfy the memory and computation
requirements without considerably sacrificing the accuracy
[7]–[12]. Several other possibilities also exist, including the
removal of redundant parameters of the model through pa-
rameter pruning, reducing in this way the complexity of the
model [13], [14] and the reduction of the required bits for
the parameter representation in order to compress the model
[11], [15]. Finally, Knowledge Transfer (KT) [16]–[23] has
arisen as a promising way to settle this issue proposing to
transfer the knowledge from one, usually larger, model to a
more compact model. Knowledge Distillation (KD) [24]–[26]

widely propagated through [27] constitutes the most prominent
offshoot of KT.

The conventional KD describes the process where the
knowledge of a complex model, known as teacher, which
accomplishes high performance, is transferred to a more
compact and faster model, known as student. The student
model is trained to regress the so-called soft labels generated
by the teacher model by raising the temperature of the softmax
activation function on the output layer of the network (known
as softening the output distribution). These soft labels convey
more information of the way the model learns to generalize,
as compared to the hard labels, aiming at implicitly recovering
similarities over the data. Apart from the aforementioned
approach where the knowledge is transferred from a powerful
model to a weaker model, there have also been proposed
approaches where the knowledge is transferred from a simpler
to a more powerful model [18] or the knowledge is transferred
from teachers to students of identical capacity [24], [28]–[30].
The aforementioned process is known as self-distillation.

KD methods can be divided into two categories: online
and offline KD. Offline KD stands for what we have already
described as the multi-stage process of training first a high-
capacity and more powerful teacher network and then distilling
the knowledge to a weaker student network by training it to
mimic the teacher network. Conventional KD is a research
topic that has been flourishing in the recent years with a broad
spectrum of applications [19], [31]–[35]. However, offline
KD is an enduring, computationally and memory demanding
procedure. To this aim, several online KD works have been
proposed recently. Online KD describes the process where
the teacher and student networks are trained simultaneously,
without requiring a separate stage for pre-training the teacher
network. Online KD includes works proposing to train multi-
ple models mutually from each other [36], as well as works
proposing to create ensembles of multiple identical branches
of a target network in order to build a strong teacher and distill
the knowledge from the teacher to the target network [37].

In the following we present the intuition of the proposed
online distillation method considering a probabilistic view of
KD. That is, deep neural models transform the probability
distribution of the data, layer by layer, learning increasingly
complex layer representations. Considering a multi-class clas-
sification problem, a conventional supervised loss forces the



data representations in the output layer of the model to
become one-hot representations. However, trying to convert
the complex data representations to one-hot representations
usually leads to over-fitting and also requires deeper and
more complicated models. Thus, in traditional KD methods
it is manifested that it is advantageous for each sample to
maintain the similarities with the other classes, instead of
merely training with the hard labels.

In this paper, we propose a novel online self distilla-
tion method, namely Online Subclass Knowledge Distillation
(OSKD), considering that inside each class there is also a
set of sub-classes that share semantic similarities (e.g., blue
cars, inflatable boats, etc.). Thus, we argue that it is useful to
maintain the similarities of the sub-classes in order to further
enhance the generalization ability of the model. Since the sub-
classes inside each class are unknown and we are not able to
follow a similar approach of softening their distribution as in
the conventional KD, we propose to estimate them using the
neighborhood of each sample. That is, we assume that the
nearest neighbors of each sample inside a class belong to the
same sub-class (i.e., share the same semantic similarities).

Thus, apart from the conventional classification objective,
we introduce an additional distillation objective which encour-
ages the data representations to come closer to the nearest
representations of the same class and concurrently to move
further away from the nearest representations of the other
classes, ensuring in this way that the distillation objective will
not encourage the representation entanglement. It is worth
noting that subclass information has been successfully used
to improve the accuracy of various learning problems [38]–
[40] highlighting the importance of exploiting this information
during the training process of powerful, yet prone to over-
fitting, deep learning models.

Summing up, the model is trained synchronously both with
the conventional supervised loss (hard labels) and the soft la-
bels so as to maintain these sub-class similarities, without also
the need of fine-tuning any other hyperparameter such as the
temperature of the softmax activation function. Furthermore,
as compared to the existing online distillation approaches, the
proposed method is computationally more efficient, since it
is capable of deriving additional knowledge from the data
themselves, without requiring to create multiple copies or
branches of the network or utilize multiple models. Finally, it
should be highlighted that the proposed distillation method can
be combined with any other method for developing effective
and faster models, e.g., [8], [9].

The rest of this paper is structured as follows. Section II
discusses related online distillation works, as well as self distil-
lation works. The proposed method is presented in Section III.
The experiments conducted to evaluate the proposed method
are provided in Section IV, while the conclusions are drawn
in Section V.

II. RELATED WORK

In this section we first discuss prior works in the field of
offline distillation with special emphasis on self distillation

and subsequently we present recent works on online KD.

A. Offline Distillation

Offline KD is a research topic that has gained considerable
research attraction during the recent year [19], [41]. Sev-
eral works have also been emerged in the recent literature,
proposing self distillation approaches. For example, in [42],
KD is applied from a teacher model to a student model of
identical architecture where the student accomplishes better
performance being also much faster. The flow of solution pro-
cedure matrix is utilized in this approach for transferring the
knowledge between the intermediate layers. A self distillation
approach where a teacher model is initially trained, and then,
after its convergence, an identical student model is trained with
both the goals of the hard labels and matching the output of the
teacher model, however without softening the logits (i.e., the
inputs to the final softmax activation function) by raising the
temperature, is proposed in [28]. Similarly, a target model is
trained with a conventional supervised loss, the self-discovered
knowledge is extracted, and in the second training stage, the
model is trained with both the supervised and the distillation
losses in [29].

B. Online Distillation

During the recent years, several online distillation have
been also proposed. The so-called codistillation method [43]
improves the accuracy by proposing to train c copies of a target
model in parallel, by adding a distillation term to the loss
function of the i-th model to regress the average prediction
of the other models. A quite similar approach where an
ensemble of students teach each other throughout the training
process is proposed in [36]. That is, each student is trained
with a conventional supervised learning loss, and a distillation
loss that aligns each student’s class posterior with the class
probabilities of other students. In this way, each model acts as
a teacher of the other models. In this approach, as opposed
to the aforementioned codistillation method [43], different
networks can be used for the mutual training.

Subsequently, an online distillation approach where a multi-
branch version of the network is created by adding identical
branches each of which constitutes an independent classifica-
tion model with shared low level layers, and a strong teacher
model is created using a gated logit ensemble of the multiple
branches in [37]. Each branch is trained with the conventional
classification loss and the distillation loss which matches the
teacher’s prediction distributions.

In this work, an online self distillation method is proposed.
That is, as opposed to the existing self distillation approaches,
the knowledge is distilled within the same model in an
online manner. The proposed approach does not use the
aforementioned multiple stages of the training pipeline, which
renders it more efficient. Furthermore, as opposed to the
existing online distillation methods, the proposed method
allows synchronous model updating, without the need of
building multiple identical models, or using multiple (possibly
different) models to mutually teach each other, which comes



with additional computational cost.

III. PROPOSED METHOD

We consider a C-class classification problem, and the la-
beled data {yi, ci}Ni=1, where yi ∈ <D an input vector and
D its dimensionality, while ci ∈ ZC corresponds to its C-
dimensional one-hot class label vector (hard label). For an
input space Y ⊆ <D and an output space F ⊆ <C , we
consider as φ(· ;W) : Y → F a deep neural network with
n ∈ N layers, and set of parameters W = {W1, . . . ,Wn}
where Wi refers to the weights of the i-th layer, which
transforms its input vector to a C-dimensional vector contain-
ing the probabilities for each class. That is, φ(yi ;W) ∈ F
corresponds to the output vector of yi ∈ Y given by the
network φ with parameters W .

In the typical classification problem, we seek for the
parameters W∗ that minimize the cross entropy loss, Jce,
between the output vector yi and one-hot class label vector ci:

W∗ = arg min
W

N∑
i=1

Jce(ci, φ(yi ;W)), (1)

The cross entropy loss for a sample i is formulated as:

Jce(ci,yi) =

C∑
m=1

cmi log(zmi ), (2)

where cmi is the m-th element of ci one-hot label vector,
and zmi refers to the m-th element of the output of the network:

zmi =
exp(φ(yi ;W)m)∑C
j=1 exp(φ(yi ;W)j)

. (3)

In this work, we propose to distill additional knowledge online
from the model itself throughout the network’s training. To this
end, considering that there are sub-classes inside each class
that share semantic similarities, we propose to maintain these
similarities, which are ignored during the network’s training
only with the hard labels.

Thus, for each representation φ(yi ;W) ∈ F we also define
the set Ri containing the nearest representations belonging to
the same class, φ(yi ;W), and a set Vi containing the nearest
representations belonging to different classes to the represen-
tation. Then, the distillation objective forces the representation
to come closer to the nearest neighbors belonging to the same
class. Furthermore, apart from the aforementioned criterion
that encodes the subclass knowledge, we add a disentangle-
ment criterion, that is each representation is also forced to
move further away from the nearest representations belonging
to different classes, so as to ensure that the distillation objec-
tive will not encourage the representation entanglement. That
is, the overall distillation objective is formulated as:

min
W
J1 = min

W

∑
yi,yj∈Ri

‖φ(yi ;W)− φ(yj ;W)‖22, (4)

and

max
W
J2 = max

W

∑
yi,yl∈Vi

‖φ(yi ;W)− φ(yl ;W)‖22. (5)

As it has also been proven in [44], equations eq. (4) and (5)
can be reformulated as:

min
W
J1 = min

W

∑
yi∈Ri

‖φ(yi ;W)− µi
r)‖22, (6)

and
max
W
J2 = max

W

∑
yi∈Vi

‖φ(yi ;W)− µi
v)‖22 (7)

respectively, where µi
r = 1

|Ri|
∑

yj∈Ri φ(yj ;W), and µi
v =

1
|Vi|

∑
yl∈Vi φ(yl ;W). This formulation allows for a simpler

implementation of the distillation objective. Thus, the overall
distillation loss is formulating as: Joskd = J1 + (1− J2).

Consequently, in the proposed distillation training proce-
dure, we seek for the parametersW∗ that minimize the overall
loss of cross entropy, Jce and distillation, Joskd:

W∗ =

arg min
W

N∑
i=1

[Jce(ci, φ(yi ;W)) + λJoskd(µi
r,µ

i
v, φ(yi ;W))],

(8)

where λ balances the importance between predicting the hard
labels and regressing the soft labels. Simple SGD is utilized
to train the model:

∆W = −η ϑJ
ϑW

, (9)

where J corresponds to the overall loss. In this way, the
network, concurrently to the cross entropy loss, is trained to
match the soft labels forcing the representations to maintain
the similarities inside each class.

IV. EXPERIMENTS

Three datasets were used to evaluate the performance of the
proposed distillation method. The descriptions of the datasets
and the utilized model architecture follow bellow. First, we
utilized the MNIST dataset for building a binary classification
problem (even digits against odd digits) which naturally offers
known subclasses, for visualizing the effect of the proposed
method. Subsequently, we performed four sets of experiments
utilizing four different number of nearest neighbors (which in
turn define the size of the subclasses) on Cifar-10 and SVHN
datasets. Finally, an ablation study is conducted on Cifar-
10 dataset in order to validate the effectiveness of subclass
knowledge distillation. Test accuracy is used as evaluation
metric. Each experiment is executed five times, and the mean
value and the standard deviation are reported, considering the
maximum value of test accuracy for each experiment. The
curves of mean test accuracy are also provided.



A. Datasets and Experimental Setup

Three datasets were used for the experiments conduncted
in this paper: the Cifar-10 dataset [45] the Street View House
Numbers (SVHN) dataset [46] and the MNIST dataset [47].
The Cifar-10 dataset, [45] consists of 60,000 images of size
32 × 32 divided into 10 classes with 6,000 images per class.
50,000 images are used as the train set and 10,000 images
as the test set. The Street View House Numbers (SVHN)
dataset [46] obtained from house numbers in Google Street
View images. It contains 73,257 train images and 26,032 test
images, divided into 10 classes, 1 for each digit from 0 to 9.
Input images are of size 32 × 32. The MNIST dataset, [47],
of handwritten digits, has a train set of 60,000 images, and a
test set of 10,000 images, divided into 10 classes, 1 for each
digit from 0 to 9. Images are of size 28× 28.

For all the conducted experiments we used a simple CNN
model consisting of five layers; unless otherwise stated. The
employed CNN model is composed of two convolutional
layers with 6 filters of size 5× 5 and 16 filters of size 5× 5
respectively, followed by a Rectified Linear Unit (ReLU) [48]
activation, and three fully connected layers (128 × 64 × 10).
The convolutional layers are followed by a 2×2 max-pooling
layer with a stride of 2. In the first two fully connected layers
the activation function is the ReLU, while the last output
layer is a 10-way softmax layer which produces a distribution
over the 10 class labels of the utilized datasets. Finally, for
comparison purposes against previous online KD approaches,
we also utilize Wide-Res 16-2 [49] to perform experiments on
Cifar-10 dataset.

All the experiments conducted using the Pytorch framework.
The mini-batch gradient descent is used for the networks’
training. In our experiments we set mini-batch size to 32. The
learning rate is set to 10−3, and the momentum is 0.9. The
models are trained on an NVIDIA GeForce GTX 1080 with
8GB of GPU memory for 100 epochs. In order to select the
weight factor λ in eq. (8) for controlling the balance between
the contributing losses, we fix the number of nearest neighbors
(i.e., we use 4 nearest neighbors) and we perform experiments
for different values of the weight factor λ. The experimental
results are presented in Fig. 1. As we can see, better results
are achieved for λ = 0.001, and thus we use this value in the
rest experiments. We should finally note, that better results
could be accomplished through a more extended search for
the optimal weight factor.

B. Experimental Results

First, a toy example is constructed in order to illustrate the
effect of the proposed distillation method. More specifically,
we use the MNIST dataset, and we build a binary classification
problem for discriminating between even and odd digits. For
each of the two classes we use three different digits, that
is 0, 2, and 4 for the even class, and 1, 3, and 5 for the
odd class. The train set consists of 36,018 samples, while
the test set consists of 6,032 samples. In this way, we are
able to acknowledge in retrospect that there are three distinct
subclasses in each of the two classes. That is, even class

Fig. 1: Cifar-10: OSKD weight factor λ in eq. (8)

consists in digits 0, 2, and 4, while odd class consists in
digits 1, 3, and 5. Then, we train a simple CNN consisting
of two convolutional and two fully connected layers with and
without the proposed distillation objective. For the proposed
distillation method, we consider 10 nearest neighbors for each
sample inside each class, for a mini-batch of 60 samples. Then,
we use the t-distributed Stochastic Neighbor Embedding (t-
SNE) [50] Linear Discriminant Analysis (LDA) [51] and Lo-
cally Linear Embedding [52] algorithms to visualize the data
representations in the penultimate layer. Experimental results
for the test set are illustrated in Figs. 2-4. For visualization
purposes, even we deal with a binary classification problem,
we utilize different colors for each subclass. Thus, it is evident
that the proposed distillation objective achieves to reveal the
three subclasses inside each class, and force them to preserve
their consistency preventing the samples collapse, allowing
thus for conveying additional useful information, while also
maintaining their discrimination ability.

Subsequently, four sets of experiments performed, for four
different numbers of nearest neighbors, in order to validate the
proposed online distillation on both the utilized datasets. That
is, we use 2, 4, 8 and 12 nearest neighbors for each sample
(abbreviated as “OSKD - 2NN”, “OSKD - 4NN”, “OSKD -
8NN”, and “OSKD - 12NN” respectively), and we compare
the performance of the proposed method against the baseline
performance, that is without distillation (abbreviated as “W/o
Distillation”). The experimental results are presented in Table
I. Best results are printed in bold. As we can observe from the
reported results the proposed method considerably improves
the baseline performance in all the considered cases. We can
also observe that better results are reported for 12 nearest
neighbors in both the considered cases. Correspondingly, in
Figs. 5 and 6 the mean test accuracy of the proposed method
for the three different number of nearest neighbors against
the baseline method are reported for the Cifar-10 and SVHN
datasets respectively, validating the enhanced performance of
the proposed method. Furthermore, it is observed that the test
accuracy decreases as the training progresses. This is attributed
to over-fitting. However, it is evident that the aforementioned



(a) W/o Distillation (b) OSKD
Fig. 2: T-SNE Visualization

(a) W/o Distillation (b) OSKD
Fig. 3: LDA Visualization

(a) W/o Distillation (b) OSKD
Fig. 4: LLE Visualization



reduction is significantly lower in the proposed OSKD method,
as compared to models trained without distillation training.
These results further highlight the regularization effect of the
proposed online distillation method.

Fig. 5: Cifar-10: Test accuracy for different numbers of nearest
neighbors inside each class

Fig. 6: SVHN: Test accuracy for different numbers of nearest
neighbors inside each class

Method Cifar-10 SVHN-10
W/o Distillation 64.83% ± 0.57% 88.82% ± 0.21%
OSKD - 2NN 66.16% ± 0.76% 89.00% ± 0.14%
OSKD - 4NN 66.39% ± 0.77% 89.52% ± 0.23%
OSKD - 8NN 66.59% ± 0.78% 89.61% ± 0.29%
OSKD - 12NN 67.36% ± 0.82% 89.67% ± 0.28%

TABLE I: Test accuracy

Subsequently, we compare the proposed method with ONE
[37] and FFL [53] methods. We should note that for as
much as possible fair comparisons, we use only two sub-
networks in all the competitive approaches, similar to [53],
since the proposed method does not utilize multiple branches
of the network. Thus, we compare the OSKD method with
ONE distillation method, considering the average performance
of the two branches, and correspondingly with the FFL-S

distillation method considering the average performance of
the two sub-networks. We should also note that the number
of parameters in both FFL-S and ONE methods is identical
to the OSKD case, since the additional branches in both
cases, as well as the fusion module in FFL-S, are discarded
in the test phase. Furthermore, even we do not follow an
ensembling methodology, we also compare the performance
of the proposed OSKD method with the ensembling methods,
that is ONE-E and FFL. It is noteworthy that the number of
parameters in ONE-E is 1.24M, and 1.29M in FFL, while
the number of parameters of OSKD is 0.70M, considering
WRN 16-2. Evaluation results are presented in Table II. As
it is shown, the proposed OSKD method achieves superior
performance over competitive online distillation methods, as
well as over ensebmling methods.

Method Test Accuracy
WRN 16-2 93.55% ± 0.11%
ONE [37] 93.76%± 0.16%

FFL-S [53] 93.79% ± 0.12%
ONE-E [37] 93.84%± 0.20%

FFL [53] 93.86% ± 0.11%
OSKD 93.96% ± 0.13%

TABLE II: Comparisons against online distillation methods on
Cifar-10 utilizing the WRN 16-2 architecture.

Furthermore, we evaluate the complexity of the proposed
online distillation method using the sum of floating point
operations (FLOPs) in one forward pass on a fixed input size.
Model size, represented by the model’s parameters, is also
reported for each of the utilized models. To this aim, we utilize
Wide ResNet 16-2 model on the Cifar-10 dataset, and we com-
pare the complexity with the most famous offline KD method
[27]. In this case, we use as teacher the stronger Wide ResNet
40-2 model (abbreviated as WRN 40-2). Evaluation results
are provided in Table III. From the demonstrated results, it
is validated the proposed online method is significantly more
efficient as compared to the conventional offline methodology.
Furthermore, we should note that even the student models
under both online and offline procedures are similar, since the
distillation concerns the training procedure, online self distil-
lation comes with certain advantages against offline method-
ologies. That is, online methodologies can generally achieve
superior performance over offline [37], and even more online
self distillation methodology apart from the aforementioned
significant gains in terms of computation and memory cost,
achieves enhanced performance, and it is also guaranteed no
compatibility issues between the student and teacher models
will arise [35], since the additional knowledge derives from the
model itself. We should finally note that competitive online
distillation methods that utilize multiple branches or copies
of a given network, require at least two times more FLOPs
than the proposed one. That is, the proposed online distillation
method is also more efficient as compared to competitive
online methods, too.



Method Teacher Student Complexity
KD [27] WRN 40-2 (2.26M parameters) WRN 16-2 (0.7M parameters) 0.43 GFLOPs
OSKD - WRN 16-2 (0.7M parameters) 0.10 GFLOPs

TABLE III: Complexity of the proposed OSAKD and KD [27]
methods using the sum of floating point operations (FLOPs) in
one forward pass on a fixed input size utilizing the Cifar-10
dataset. Model size, represented by the model’s parameters,
is also reported inside parentheses for each of the utilized
models.

Finally, an ablation study is conducted in order to validate
that the effectiveness of the proposed method derives from
the subclass knowledge rather than the additional criterion
that forces the data representations of each class to move
further away from the nearest representations of the other
classes so as to ensure that the distillation objective will
not encourage the representation entanglement. To this aim,
we perform experiments utilizing only the subclass objective,
that is forcing each representation to come closer to the
nearest neighbors belonging to the same class, without the
aforementioned disentanglement criterion (denoted as Only
Class), as well as utilizing only the disentanglement criterion,
without the subclass objective (denoted as Only Non-Class).
Experimental results on the Cifar-10 dataset are provided in
Table IV. The expected number of samples of the same class is
2 to 4 for batches of 32 samples. Indeed, using these numbers
of neighbors for estimating the subclasses leads to the best
accuracy. On the other hand, the rest of the in-batch samples
are expected to belong to a different class, and as a result,
using a larger number of neighbors from different classes leads
to better accuracy for the disentanglement criterion. We should
highlight that the subclass criterion improves the performance
in any case, confirming the subclass knowledge hypothesis.
Furthermore, the best performance is accomplished by the
combined objective.

NN Only Class Only Non-Class Both
2 65.40% ± 1.18% 65.24% ± 0.84% 66.16% ± 0.76%
4 65.95% ± 0.63% 65.72% ± 0.73% 66.39% ± 0.77%
8 65.30% ± 0.53% 66.44% ± 0.45% 66.59% ± 0.78%

12 65.20% ± 0.67% 66.42% ± 0.67% 67.36% ± 0.82%

TABLE IV: Cifar-10 - Mini Batch Size: 32 (Baseline:64.83%
± 0.57%)

V. CONCLUSIONS

In this paper a novel single-stage self knowledge distilla-
tion method is proposed, namely Online Subclass Knowledge
Distillation, that aims at recovering the similarities inside
classes, improving the performance of any deep neural model
in an online manner. As opposed to existing online distillation
methods, the proposed method is capable of obtaining further
knowledge from the model itself, without building multiple
identical models or using multiple models to teach each other,
rendering the OSKD method more effective. The experimen-
tal evaluation on two datasets indicates effectiveness of the
proposed method in improving the classification performance.
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