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Abstract—In this paper, we deal with the Electric Load
Demand Forecasting (ELDF) problem, considering the real case
scenario of Greek Energy Market. ELDF constitutes a critical
task accompanied by many applications, e.g., power systems op-
erations and planning. In order to address the specific objectives
and requirements of the Greek Energy Market, we propose a
lightweight model with a novel loss function. We evaluate the
effectiveness of the proposed model in terms of mean absolute
percentage error, while we also evaluate its efficiency in terms
of training/inference time, complexity, required memory, etc.
The proposed model accomplishes the specific objectives dictated
by the Greek Public Power Corporation, while it also achieves
superior performance as compared to the successful baseline
model ResNetPlus.
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I. INTRODUCTION

Electric Load Demand Forecasting (ELDF) refers to the
task of forecasting the aggregated expected electricity demand.
ELDF constitutes a vital task since the inception of electric
power industry, and it is accompanied by many applications
including power systems operations and planning, energy
trading, etc. [1]. As energy market becomes increasingly
competitive, it is of crucial importance to develop methods
that allow for accurate ELDF. This has fueled the research
interest over the recent years [2].

Firstly, statistical models, such as Auto-Regressive Moving
Average (ARMA) [3] and Auto-Regressive Integrated Moving
Average (ARIMA) [4] were used. The utilization of such
models is accompanied by several shortcomings. For example,
it prevents the exploitation of useful external factors such
as the weather [5], while it is also observed that noise can
significantly affect the robustness of the predictions [6].

Surveying the relevant literature, we also come across
several machine learning algorithms for addressing the ELDF
task. For example, Support Vector Regression (SVR) has been
proposed for predicting the load demand [7], and even though
the training process is time-consuming, with an appropriate
parameter tuning, it achieves promising results considering
very-short load demand forecasting problems. A random forest
based ensemble system is proposed in [8] achieving consider-
able performance in terms of accuracy and stability.

Subsequently, motivated by the exceptional performance
of Deep Learning (DL) algorithms [9] in various problems,

e.g., image classification and retrieval [10], [11], several recent
studies introduced DL for addressing a variety of time series
forecasting tasks, ranging from retail demand forecasting [12]
to financial time series forecasting [13]. Besides, DL ap-
proaches have been proposed for addressing the ELDF problem
[14], [15], [16], [17], [18], [19] providing very promising
results.

Furthermore, several studies have focused on the Greek
Energy Market in the recent literature [20], [21], [22], [23].
For example, Long Short Term Memory (LSTM) models have
been proposed for the ELDF problem, achieving considerable
performance, since they feedback connections which increase
the accuracy on sequential data [24], [25], while a fuzzy-based
ensemble model that uses hybrid deep learning neural networks
for load forecasting is proposed in [26] accomplishing notable
performance.

In the vast majority of the aforementioned methods two
assumptions are made, considering the ELDF problem. First,
it is considered that any data before the target day (the day
whose load demand we want to predict) are available and can
be utilized. Furthermore, real weather information of target
day is considered available.

In this paper, we deal with ELDF problem on Greek
Energy Market, considering a real case scenario. That is, we
use real data provided by the Greek Public Power Corpo-
ration (PPC), without the unconditional availability of prior
knowledge before the target day. More specifically, as it is
illustrated in Fig. 1, in the real case scenario there is an
information gap between the target day and the past load data,
while as it was previously mentioned the typical setup for
energy forecasting assumes that all the previous load data are
available. It should be noted, that we retain the assumption of
the weather information on the target day, since its solution
relies on another task known as air temperature forecasting
[27].

The objective of this work is to provide effective models
which can accomplish the actual target dictated by the Greek
PPC, that is 99% of predictions to have mean absolute percent-
age error below 10%. To achieve this goal, considering the real
case scenario described in the subsequent Section, we propose
a lightweight neural network with a novel loss function. To
the best of our knowledge, there is no other work that uses
data of Greek Energy Market on a realistic setup. Overall, our
approach can achieve remarkable performance, according to
metrics introduced by PPC with an ensemble of lightweight



neural networks.

Fig. 1: Comparison between the typical setup and a realistic
approach regarding the accessibility of previous load data.
Available load data are printed in green, occasionally available
load data in orange, and unavailable load data in red.

The remainder of the manuscript is organized as follows.
Section II presents in detail the proposed method, including
a description of the real scenario of Greek Energy Market,
the proposed lightweight model, and the novel loss function.
Subsequently, in Section III the experiments conducted to
evaluate the proposed method are provided, and finally the
conclusions are drawn in Section IV.

II. PROPOSED METHOD

In this paper, we propose a novel approach for electric
load demand forecasting on Greek Energy Market. As it has
already been mentioned, two major assumptions are made in
the vast majority of relevant works [16], [28], [29], [30]. First,
it is considered that every load data, which chronologically
is before the target day, could be available. Second, weather
information for the target day is also considered as known. In
our real case scenario, we make only the second assumption,
since its solution relies on another task known as air temper-
ature forecasting [27].

Thus, we first utilize the successful model, called ResNet-
Plus [29], which also makes the aforementioned assumptions,
and we adapt it on our scenario so as to use it as base-
line model. Despite its effectiveness, ResNetPlus is a highly
complex and hence computationally and memory demanding,
as well as time-consuming model. However, in our case,
both training and inference speed are of utmost important,
since the final implementation will be used in production
where flexibility is essential. Therefore, in this paper a more
lightweight model is proposed in order to meet the specific
requirements of our scenario. More specifically, we propose a
lightweight Multi-Layer Perceptron (MLP) model, trained with
a novel loss function. The proposed model uses a variety of
load, weather and calendar features and by making only the
second assumption achieves remarkable performance. In the
subsequent Sections we describe in detail the real scenario of
Greek Energy Market, the proposed lightweight model, as well
as the proposed loss function.

A. Greek Energy Market - Real Scenario

In this paper, we deal with the real-case scenario of Greek
Energy Market. In this scenario, previous week’s energy data
are being published each Thursday. This delayed availability
creates a gap of 4-10 missing days on the data, which should
be filled before moving on to the final predictions of the target
day. To address this issue, we create a model per missing
day, plus one more for the target day, leading to a total of 11
different models, where each one will be trained individually.
The input data to each of the models are presented in Table I.

Since each of these models have the same architecture
we should clarify the difference of their inputs. This can be
achieved by explaining in more detail a specific case. Suppose
that today is Wednesday 11th of March, we have a gap of
10 days and we want to predict the load demand for 12th of
March. The available data are all temperature information until
11th of March and all load information until 1st of March. So,
the first step is to fill the load data from 2nd to 11th of March.
For March 2 we use Model-0 that has inputs all the original
features of Table I. For March 3 we use Model-1 that has same
inputs as Model-0 with only difference that Lday will be the
output of Model-0. Respectively, with the same method March
8 will be predicted by Model-6 having as Lday the output of
Model-5. Now, for 9-11 of March we have to replace Lweek

with the output of the appropriate model. Having done this
procedure, we can now predict 12 of March which was our
initial target day. Here Model-10 replaces Lday with Model-
9’s output, Lweek with Model-3’s output, and the only feature
that is not available is the temperature, T . In this work, we
make the assumption that we know next day’s temperatures
and so we can use them to produce our final results.

B. Proposed Lightweight Model

The proposed architecture is an MLP consisting of two
hidden layers with 300 and 100 neurons respectively. The
input layer consists of 171 neurons and the output layer of 24,
one for each hour of the target day. As activation function,
the Rectified Linear Unit (RELU) activation is used. The
input data that are used to predict the 24 loads of the Target
Day (TD) have mainly been selected according to historical
data related to this TD. To be more precise, these days are
chronologically 1, 7, and 28 days before TD. In this way, we
aim to capture useful information of previous day, week and
month respectively. The rest of input data concern the TD. That
is, we use two booleans indicating if TD is Weekend (W) or
Holiday (H), an integer indicating what Day (D) of the week
TD is and an array of Temperatures (T) for TD.

TABLE I: Input Data

Name Size Description
Lmonth 24 Load of the day that is chronologically 28 days before TD
Lweek 24 Load of the day that is chronologically 7 days before TD
Lday 24 Load of the day that is chronologically 1 day before TD

Tmonth 24 Corresponding temperature for Lmonth

Tweek 24 Corresponding temperature for Lmonth

Tday 24 Corresponding temperature for Lmonth

T 24 Corresponding temperature for target day
D 1 Indicator for which day of the week is the target day
W 1 Indicator if target day is weekend
H 1 Indicator if target day is holiday



C. Proposed Loss Function

In this paper, we propose a novel loss function to train the
proposed models. The proposed loss function combines the
Mean Absolute Percentage Error (MAPE):

LMAPE(y, ŷ) = |y − ŷ

y
|, (1)

where y is the ground truth label and ŷ is the prediction from
the neural network, with a new metric that aims to address the
needs of Greek Energy Market. The proposed metric is based
on the focal loss [31] adapted for regression tasks. With the
use of the proposed loss function:

L = a ∗ LMAPE + b ∗max(0,LMAPE − c) ∗ LMAPE , (2)

if the training model does not achieve MAPE lower than c it
will get higher penalty. Note that indices are omitted in (2)
to avoid cluttering the notation. The first addend of this loss
function is critical for overcoming the under-fitting [32]. If first
addend is omitted, under-fitting will occur for high values of c,
where the model produces wrong predictions but still returns
zero error; hence model’s weights will not update. Parameters
a, b are real numbers between 0 and 1, indicating the weight
of each addend .Since in Greek Energy Market the target is
a MAPE lower than 10, any c below 10 is suitable in our
scenario.

III. EXPERIMENTAL EVALUATION

In this Section, we present the evaluation metrics, the
implementation details of the proposed method, as well as
the experimental results that validate the effectiveness of the
proposed method.

A. Evaluation Metrics

The main target of this research is to create an efficient
model to predict next day’s load demand in Greece. The
effectiveness of such a model can be easily calculated by
creating three groups of MAPE errors. Errors below 10% (C1),
errors between 10-15% (C2) and errors above 15% (C3). If a
model achieves, on average, 99% of its errors to be in C1, then
it is considered successful according to our scenario. Besides
we also use MAPE to evaluate the proposed model, since it is
generally the main metric error considering time-series.

Furthermore, since whole processes will be executed on
the production environment of PPC, we need fast responses
and as low as possible computational cost. Thus, we also
evaluate the efficiency of the proposed method, providing the
corresponding times for a forward pass, a complete training
phase which means the time needed for the training of all 11
models that sequentially will produce the predictions for the
desired TD, the complexity (training cost) in terms of Floating
Point Operations Per Second (FLOPs), the model parameters,
and required memory, for a single instance of both baseline
and proposed model.

B. Experimental Setup

In this paper, we evaluate the performance of the proposed
lightweight model, on two scenarios, that is the common
scenario used in the literature (accepting both assumptions

presented in II), as well as the real-case scenario of Greek
Energy Market. Apart from the actual objective dictated by
the Greek PPC (that is 99% of predictions to have MAPE
below 10%), which is accomplished as it is experimentally
shown, we use the successful and powerful ResNetPlus model
to perform comparisons.

Both proposed and ResNetPlus model implemented on
Keras/Tensorflow. As in [29], we use the mean prediction of
15 trained models with different initial weights. This has an
enrichment on the output, since it is more robust to hidden
data noise and it produces a more generalized model [33].

For model training we used 5 years of data (2012-2016) and
1 year for validation (2017). For testing we kept 1 year (2018)
as well. The normalization that we used is the division with
the maximum element of each column and the total number
of epochs had been set equal to 2000. In most cases a smaller
number of epochs were needed, since early stopping technique
was used.

C. Experimental Results

As mentioned previously, we used 5 years for training, 1
for validation and 1 for testing. The parameters in eq. (2)
were selected using grid search as follows: a = 1, b = 0.4
and c = 2. These parameters are revealing some interesting
remarks. For instance, despite the fact that our main target
is a MAPE below 10, the optimal parameter c was found to
be 2; indicating that we should be more strict throughout the
training in order to achieve our desired metrics. Furthermore,
the optimal parameter b is equal to 0.4 and in combination with
parameter a that is set to 1, we observe that the first addend
of (2), which is MAPE, had a more strong impact to the loss
function.

Two scenarios have been tested. That is, the most ob-
served scenario through relevant literature that makes both
assumptions of not having any missing data and knowing real
weather data for target day, and the real case scenario. First,
we provide MAPE errors for all the considered cases, since
it is the main metric error considering time-series in general.
The experimental results for both the considered scenarios are
presented in Table II. As demonstrated, the proposed model
achieves smaller errors compared to the baseline model on
both the cases.

TABLE II: Energy forecasting evaluation (MAPE is reported
for different setups)

Model MAPE (%) MAPE (%) Real Scenario
ResNetPlus 1.80 2.77
Lightweight 1.74 2.52

Subsequently, we evaluate the effectiveness of the proposed
method considering our production metrics, as previously
described. The experimental results for each month of a year
as well as the average results, for the common scenario
are presented in Tables III and IV for the ResNetPlus and
the proposed model, respectively. Better results are achieved
based on our production metrics with 99.51% of our proposed
model’s errors to be in C1, as opposed to the percentage of
ResNetPlus errors which is 99.47%.



TABLE III: ResNetPlus

Month <10 [10,15) >=15
January 100 0 0
February 100 0 0
March 98.79 1.21 0
April 100 0 0
May 100 0 0
June 100 0 0
July 99.06 0.67 0.27

August 100 0 0
September 100 0 0

October 99.06 0.4 0.54
November 100 0 0
December 96.77 1.61 1.61
Average 99.47 0.32 0.21

TABLE IV: Proposed Lightweight Model

Month <10 [10,15) >=15
January 99.87 0.13 0
February 100 0 0
March 99.06 0.94 0
April 99.86 0.14 0
May 100 0 0
June 100 0 0
July 99.06 0.27 0.67

August 100 0 0
September 100 0 0

October 99.06 0.27 0.67
November 100 0 0
December 97.18 2.75 1.08
Average 99.51 0.29 0.20

It is worth mentioning that the ensemble of 15 models is
indeed a valuable component for achieving even better results.
The 15 lightweight models have a mean MAPE of 1.92 and a
standard deviation of 0.05, while the ensemble model achieves
an even smaller MAPE of 1.74.

The experimental results considering the real case scenario
are presented in Tables V and VI for the ResNetPlus and
the proposed lightweight model, respectively. In this case, ac-
cording to our production metric, ResNetPlus achieves slightly
better score in C1 over the proposed model. Nevertheless, both
models achieve a percentage above 99% in C1 which is the
main objective of our work.

TABLE V: ResNetPlus - Real Scenario

Month <10 [10,15) >=15
January 100 0 0
February 99.7 0.3 0
March 99.06 0.94 0
April 98.58 0.42 0
May 100 0 0
June 100 0 0
July 99.06 0.94 0

August 100 0 0
September 100 0 0

October 99.06 0.4 0.54
November 100 0 0
December 94.49 3.9 1.61
Average 99.24 0.58 0.18

Finally, the evaluation of the efficiency of the proposed
method against the baseline model is provided in Table VII.
As it can be observed, the proposed model is significantly more
efficient as compared to the baseline model. Considering the
complexity (training cost), model parameters, required mem-

TABLE VI: Proposed Lightweight Model - Real Scenario

Month <10 [10,15) >=15
January 99.33 0.67 0
February 100 0 0
March 99.6 0.4 0
April 98.75 0.97 0.28
May 99.87 0.13 0
June 100 0 0
July 99.06 0.67 0.27

August 99.87 0.13 0
September 100 0 0

October 98.79 0.54 0.67
November 100 0 0
December 94.22 2.82 2.96
Average 99.12 0.53 0.35

ory, training time, and inference time. Especially considering
the inference time, which is of great importance, the proposed
model is 74.5 times faster. Finally, it is also noteworthy that
ResNetPlus requires more than 2 days for training, while the
proposed model can be trained in less than a day. That is,
the proposed model achieves better performance considering
the MAPE metric and competitive performance considering
our production metric (also better in some cases), but it is
significantly more efficient and faster.

TABLE VII: Evaluation of Efficiency

Metric ResNetPlus Proposed
Parameters 131,704 84,124
Memory 0.54 MB 0.31 MB

Complexity 260464 FLOPs 167824 FLOPs
Training Time 55 h 5 h
Inference Time 88 s 1.19 s

IV. CONCLUSIONS & FUTURE RESEARCH DIRECTIONS

In this paper, we proposed a lightweight neural network
with a novel loss function in order to address the electric load
demand forecasting problem considering the real case scenario
of the Greek Energy Market. The proposed model achieves
the specific target imposed by the Greek PPC, while it is also
computationally efficient. The proposed model is also com-
pared with the successful ResNetPlus, achieving competitive
performance, while also being significantly more efficient in
terms of training and inference time, complexity, and required
memory.

Future research directions include the incorporation of the
weather forecasting to the final model that predicts the electric
load demand of the target day. Furthermore, more sophisticated
ways [34] for realizing the ensemble of the 15 models could
be studied, in order to reduce the existent noise.
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