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Abstract. Enriching the map of the flight environment with semantic
knowledge is a common need for several UAV applications. Safety leg-
islations require no-fly zones near crowded areas that can be indicated
by semantic annotations on a geometric map. This work proposes an
automatic annotation of 3D maps with crowded areas, by projecting
2D annotations that are derived through visual analysis of UAV video
frames. To this aim, a fully convolutional neural network is proposed,
in order to comply with the computational restrictions of the applica-
tion, that can effectively distinguish between crowded and non-crowded
scenes based on a regularized multiple-loss training method, and pro-
vide semantic heatmaps that are projected on the 3D occupancy grid of
Octomap. The projection is based on raycasting and leads to polygonal
areas that are geo-localized on the map and could be exported in KML
format. Initial qualitative evaluation using both synthetic and real world
drone scenes, proves the applicability of the method.
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1 Introduction

A 3D map of the UAV flight environment with annotated regions that relate to
safety, such as crowd gathering locations or no-fly zones in general, is crucial for
drone path planning and navigation. Recently, imposed legislations for drones,
forbid the flight in vicinity of crowds, for drone flight safety purposes. For exam-
ple, the drone flight regulation rules for UK! define that drones should not be
flown within 50m of people and within 150m of a crowd of over 1000 people, while
in Ttaly? it is not allowed for the drone to operate at a distance less than 50m of

* The research leading to these results has received funding from the European Unions
Horizon 2020 research and innovation programme under grant agreement number
731667 (MULTIDRONE). This publication reflects only the authors views. The Eu-
ropean Union is not liable for any use that may be made of the information contained
therein.
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human crowds. Therefore, it is crucial for the drone to be capable of detecting
crowds in order to define no-fly zones and proceed to re-planning during the
flying operation. Towards this end, in this work we utilize deep Convolutional
Neural Networks (CNN) [13]. In particular, we propose a fully convolutional
architecture in order to comply with the computational limitations of the appli-
cation.

During the recent years deep CNNs, have been established as one of the
most efficient Deep Learning architectures in computer vision, accomplishing
outstanding results in a plethora of computer vision tasks. More specifically, deep
CNNs have been successfully applied in image classification [25], object detection
[14], semantic segmentation [7], image retrieval [28], and pose estimation [26].
The main reasons behind their success are the availability of large annotated
datasets, and the GPUs computational power and affordability.

Thus, in this paper we propose a fully convolutional neural model for crowd
detection in drone-captured high-definition (HD) video frames. The fully convo-
lutional nature of the model is crucial in handling input images with arbitrary
dimension, and estimating pixel-level probability heatmaps, which in turn are
projected on the 3D occupancy grid of Octomap [10] . The projection is based
on raycasting and leads to polygonal areas that are geo-localized on the map
and could be exported in Keyhole Markup Language (KML) format. Finally, a
primary contribution of this paper is a reusable software architecture for Robotic
Operating System (ROS) [20] and the implementation of a system that anno-
tates maps with regions of crowd, that are recognized in video frames. That is,
utilizing the generated heatmaps we describe the task of map projection that
uses the heatmaps together with other sensor data that constitute the set of
extrinsic and intrinsic camera parameters for the scene. The detection can be
performed offline or during the flight depending on the architecture of the drone
and the wireless network connectivity. The prototype implementation of our sys-
tem demonstrates its applicability for annotating maps with regions of human
crowds and exporting them in KML format, used by Google Earth APT [9].

The main contributions of this work can be summarized as follows:

— We propose a lightweight fully convolutional model for crowd detection to-
wards drone flight safety

— We propose a generic multiple-loss regularized training method in deep CNNs

— We propose a method that implements the projection of the crowded heatmaps,
derived from the crowd detection convolutional model, onto the 3D occu-
pancy grid of Octomap.

— We propose a software architecture for ROS and the implementation of a
system that annotates maps with regions of semantic classes (i.e. crowded
scene)

The remainder of the manuscript is structured as follows. In Section 1.1, re-
lated work is described. In Section 2, we propose the crowd detection method for
drone flight safety and in Section 3 we describe the proposed system architecture
that implements the UAV mapping. In Section 4, we describe the acquisition of
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drone data and present results of our crowd detection scenario in both synthetic
and real-world drone imagery. Conclusions follow.

1.1 Related Work

Although several works utilize deep CNNs for crowd analysis and understanding,
e.g.[3,24,2], research in the topic of crowd detection is rather limited. Further-
more, to the best of our knowledge, crowd detection in drone-captured images,
which bears additional challenges (e.g. small person size, occlusions etc.), is an
uncharted territory. Since the crowd first needs to be detected, this emphasizes
the demand for algorithms capable of efficiently distinguishing between crowded
and non-crowded scenes in drone-captured images. A first attempt utilizing state-
of-art deep CNNs is presented in [27], where a pretrained model is finetuned for
the task of crowd detection.

As we negotiate about flying robots, namely UAVs, in the last years, several
approaches have been followed to augment topological maps [21] with semantic
information [29], [6], allowing robots to reason about more expressive concepts
and to execute more sophisticated tasks. The goal of these techniques is to learn
how to split the environment into regions that have a coherent semantic meaning
to humans. The combination of semantics with topology is an important step to-
wards closing the gap between the traditional robotic representation of the world
and human cognitive maps, making it easier for robots and humans to commu-
nicate and cooperate. Recently, the focus of the robotics community has shifted
towards semantic representations [19], [16], [15] and object relation modeling in
semantic maps [18], [1], [17] to develop autonomous interactive robots that are
capable of understanding the semantics and relationships between the objects in
the environment, besides exploiting occupancy grid maps for navigation.

2 Proposed Crowd Detection Model

In this work, we propose a crowd detection method for drone flight safety, us-
ing deep CNNs. A main focus is to provide a lightweight CNN model, which,
satisfying the computational and memory limitations of our application, can dis-
tinguish between crowded and non-crowded scenes, in drone-captured images.
To achieve this goal, a fully convolutional model is proposed. The fully convo-
lutional nature of the model is crucial in handling input images with arbitrary
dimension, and estimating a heatmap of the probability of crowd existence in
each location of the input image, that can be used to semantically augment the
flying zones. Furthermore, this will allow for handling low computational and
memory resources on-drone whenever other processes occur (e.g., re-planning,
SLAM, etc.), and only low-dimensional images can be processed on the fly for
crowd avoidance.

We should also note that the fully convolutional architectures are accompa-
nied by a series of benefits. For example, the convolutional neural layers preserve
spatial information due to the spatial arrangement of the activations, as opposed
to the fully connected layers that discard it since they are connected to all the
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input neurons. That is, the convolutional layers inherently produce feature maps
with spatial information. Additionally, an architecture without fully connected
layers drastically decreases the amount of the model parameters, and therefore
the computational cost is restricted, since the fully connected layers of deep
CNNs usually occupy the most of the model parameters. For example, in VGG
the fully connected layers comprise 102M parameters out of a total of 138M
parameters. Finally, we should note that state-of-the-art object detectors, like
SSD, also use fully convolutional architectures.

2.1 CNN Architecture

The proposed CNN model contains six learned convolutional layers. The network
accepts RGB images of size 128 x 128 x 3. The output of the last convolutional
layer is fed to a Softmax layer which produces a distribution over the 2 classes
of Crowd and Non-Crowd. Each convolutional layer except for the last one is
followed by a Parametric Rectified Linear Unit (PReLU) activation layer which
learns the parameters of the rectifiers, since it has been proven to enhance the
classification performance, while max-pooling layers follow the first and the fifth
convolutional layers.

2.2 Multiple-Loss Training

In order to enhance the generalization ability of the proposed crowd detection
model, we propose a multiple-loss training method. That is, motivated by the
Linear Discriminant Analysis (LDA) method, which aims at best separating
samples of different classes, by projecting them into a new low-dimensional space,
which maximizes the between-class separability while minimizing their within-
class variability, we also propose a new model architecture. The new model,
apart from the softmax loss layer which preserves the between class separability,
includes an additional loss layer that aims to bring the samples of the same class
closer to each other.

That is, considering a labeled representation z;, we aim to minimize the
squared distance between z; and the mean representation of its class.

Let Z = {I;,i = 1,...,N} be the set of N images of the training set,
Z={z;,i=1,...,N} the set of N feature representations emerged in a certain
layer of a deep neural model, and C* = {cy,k = 1,..., K'} the set of K* repre-
sentations of the i-th image, belonging to the same class. We compute the mean
vector of the K representations of C* to the image representation z;, and we
denote it by p. That is, pul = 2= >, cx.

Then our goal is defined by the following optimization problem:

N

i = mi AT

miy 7 = iy ) i - i )
=

The Euclidean Loss (Sum of Squares) is utilized for implementing the addi-
tional formulated regression task in eq(1). We should note that the additional
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Euclidean Loss layer can be attached, either to a certain convolutional layer (e.g.
last one) or to multiple layers. The proposed multiple-loss training method can
be considered as an extra regularization layer that exploits information from the
data samples that are relevant to the input image. Generally, multitask-learning
[4] constitutes a way of improving the generalization performance of a model.
Furthermore, the proposed regularization technique can be applied for generic
classification purposes, and also in various deep architectures, which is of utmost
importance since deep neural networks are prone to over-fitting due to their high
capacity.

2.3 Crowd-Drone Dataset

Since there is no publicly available crowd dataset of drone-captured videos and
images, we have constructed a Crowd-Drone dataset. The new dataset has been
created by querying with specific keywords the Youtube video search engine.
More specifically, we collected 57 drone videos using keywords that describe
crowded events (e.g. marathon, festival, parade, political rally, protests, etc).
We also selected non-crowded videos by searching for generic drone videos. Non-
crowd images (e.g. cars, buildings, bikes, etc.) were also randomly gathered from
the senseFly-Example-drone® and the UAV123* datasets. Subsequently, we man-
ually annotated crowded regions from the extracted frames. A total number of
5,920 crowded regions and an equal number of non-crowded images formulated
the Crowd-Drone dataset. Sample regions of crowded and non-crowded scenes
are shown in Fig. 1.

Fig. 1. Sample regions of the Crowd-Drone dataset.

We have trained the proposed crowd detection model on the aforementioned
dataset utilizing the proposed multiple-loss regularized training method on all
the convolutional layers of the model.

3 Proposed System Architecture

3.1 Architecture Overview

The proposed ROS-based architecture (Fig. 2) that implements the UAV map-
ping is based on image analysis and consists of the Visual Semantics Analyser,

3 https://www.sensefly.com/drones/example-datasets.html
4 https://ivul.kaust.edu.sa/Pages/Dataset-UAV123.aspx
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Semantic Map Region Projector and the Semantic Map Manager that are de-
scribed below.

For each drone a video stream from an on-board camera is published into
ROS as a sequence of consecutive ROS image messages, each one corresponding
to a grabbed video frame. During flight these messages are transmitted over a
wireless network to the processing server which runs our software. Our system
requires additional ROS messages for sensor data for the projection into the
three-dimensional space of the flight environment. These include the position
of the vehicle that is provided by the GPS sensor and pose of the gimbal on
which the camera is mounted from the corresponding MCU and camera intrinsic
parameters from the camera controller, e.g. the focal length of each input frame.
In case of drones that are designed for ROS, these data are published as messages
by specialized nodes that run on-board. In scenarios without ROS, sensor data
can be received through other media and are published as ROS messages by our
software.

L4

Camera Control Gimbal Control

Onboard
Camera

Video Frame Visual Semantics Semantic Map Semantic Map
Publisher Analyzer Region Projector Manager

Fig. 2. Outline of the proposed system architecture.

Mapping API

3.2 Visual Semantics Analyzer (VSA)

The Visual Semantics Analyzer receives a single frame that belongs to a video
sequence and provides an output in the form of numerical 2D annotations for
each input pixel. The values can be either class identifiers (labels) or probabilities
for occurrence of a specific class that can be subsequently thresholded for its
discrimination. It subscribes to a multiple number of ROS topics and publishes
an equal number of output topics. Each incoming ROS image message is tagged
with an ID of its origin, e.g. 1 to indicate a frame from drone 1, and placed at
a processing queue.

This part of the system uses the deep neural networks to analyze the incoming
video frames and derive their visual semantics. Using an enlarged input size,
compared to that of training, expands the single class prediction into a heatmap
that contains a probability for each patch of the input image. The neural network
expects input image with square dimensions and the source frame resolution is
1920x1080 pixels, thus the vertical dimension is padded with zeros and the input
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size is set to 1920x1920. The spatial dimensions of the FCNN’s output activation
tensor are significantly smaller due to down-sampling performed by max-pooling
layers. It is resized to 1920x1920 using linear interpolation and then cropped to
the original input size, providing pixel-level probabilities for the existence of
crowds. The numerical annotations of the scene semantics are published as ROS
image messages keeping the same timestamp with the source frame.

In addition, a compatibility layer was designed so that any UAV platform or
synthetic data can be used with our system. Given a record of sensor data from
the same moment in time it publishes messages in three topics that are required
for 3D projection. The drone telemetry message contains the GPS coordinates
provided by the onboard GPS. If the camera is mounted on a gimbal, a set
of pitch, roll, yaw is published as gimbal status. The width and height of the
camera sensor and the focal length in millimeters are published in ROS as the
camera status. The data can be received offline in the form of a log or data file,
online using TCP/UDP sockets or through the web using HTTP requests by
implementing interoperability with a web application.

Finally, a visualization helper that runs on its own thread, allows the visual
inspection of the FCNN input/output during analysis of live video streams.

3.3 Semantic Map Region Projector (SRP)

The Semantic Map Region Projector (SRP) comprises the processes that conduct
projection of the produced heatmap, e.g. the crowd existence heatmap, onto the
3D volumetric map handled by Octomap. This is accomplished by the following
stages:

The first stage of the process is responsible of gathering all the appropri-
ate ROS messages and synchronizing them with the current processed heatmap
based on their accompanying timestamps. The sensor data contained in these
messages must be synchronized so that the camera extrinsic and intrinsic pa-
rameters match the moment that the frame was captured. These data include
the drone position, gimbal orientation and camera intrinsic parameters that may
vary like focal length. By applying thresholding on the heatmap in order to retain
only image locations with high probabilities of crowd existence, we convert the
image into a binary image where groups of adjacent pixels with value 1 (white)
represent 2D regions occupied by crowd. Next we apply a contour following algo-
rithm in order to find the contours of this image, resulting in a new binary image
indicating the boundaries (white pixels) of the aforementioned crowd regions 2D
polygons. If needed, the polylines are simplified maintaining their shape accord-
ing to the Ramer-Douglas-Peucker algorithm [5], which takes a curve composed
of line segments and finds a similar one with fewer points. By traversing the
points (pixels) of the regions’ boundaries in a counter clockwise manner, we con-
duct ray casting [8], [22]. More specifically, this contour image lies on the focal
plane of the drone camera, for which we know the following parameters: a) the
location of the center of projection (COP) in the 3D world (derived from the
drone location), b) the camera orientation (derived from the gimbal state) c)
the distance of the focal plane from the COP (the camera focal length). Thus
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one can cast a ray from each of the boundary contour points towards the vox-
els of the Octomap. This results in finding the occupied voxel hit by each ray,
leading to the evaluation of the X)Y,Z terrain coordinates where each of the
contours’ points is projected, as the Octomap is coordinates-referenced. Since
the 2D boundary contour points are traversed sequentially, so are the points of
the 3D boundary contour (polyline).

3.4 Semantic Map Manager (SMM)

The final stage of our pipeline is the Semantic Map Manager whose functionality
can be summarized as follows: Firstly, the polygonal lines are fused and delineate
crowd gathering locations (see Section 2) on the 3D map. As the drone moves,
and its camera sees new areas of the terrain, the newly generated polygonal lines
are merged with previous ones using the union operator.

Subsequently, the constantly updated geometric annotations are stored in
an internal data layer as ROS messages that will be exported as KML files.
These will be used for drone navigation and control purposes as well as for
visual inspection by the flight /safety personnel. The KML is a file format used
to display geographic data and to overlay annotations on a map such as Google
Earth. KML uses a tag-based structure with nested elements and attributes and
is based on the XML standard. In our case we use the polygon entity to store the
coordinates of the earth surface locations that form the points of the polyline,
delineating for example a crowd area.

4 Experiments and Qualitative Results

4.1 Data Creation and Acquisition

Synthetic Scenes In order to test our system for the generation of automatic
crowd annotations, we needed aerial footage of crowds at known positions on
the 2D plane of the map. Setting up such data acquisition scenarios in the real
world, would be very cumbersome. As an alternative, we have generated scenes
that contain synthetic crowds in a virtual 3D world environment using Unreal
Engine 4 (UE4) [12] and Microsoft AirSim [23].

UEA4 is a game engine developed by Epic Games that can achieve high-quality
photorealistic graphics, includes a physics engine to simulate real-world physics,
supports development in C++ and provides flexible world and asset editors. The
AirSim simulator includes a plugin for UE4 that can be used to navigate a virtual
UAV inside any 3D world model. In our case various assets, such as crowd and
landscape assets, were combined to produce crowd scenes and were programmed
to interact and look as realistic as possible. The AirSim plugin was used for
controlling the virtual drone and extracting high-definition (HD) images along
with simulated sensor data, i.e. camera pose, camera intrinsic parameters, etc.
Our setup allows the export of the synthetic crowd positions that are predefined
in the 3D space as ground truth annotations for each rendered scene. We have
used these annotations to verify the correctness of our system’s output along
with Full HD (1920x1080) synthetic frames.



Semantic Map Annotation using Deep Learning Models 9

Real-World Scenes To test the applicability of our system in real-world en-
vironments we gathered video footage and sensor data using an off-the-shelf
commercial quadrocopter. The DJI Phantom 4° can record video at various res-
olutions up to DCI 4K (4096x2160) [11], accompanied with a log file that contains
values of several internal sensors and microcontrollers. The log file begins at the
moment when the engines of the drone start, before take-off. To emulate a drone
that operates with ROS we have paired the records from the DJI log file with
the frames recorded from the video camera, giving them the same timestamp.
The events in the DJI log are recorded at a specific frequency of 10Hz and
the frequency of the published frames in ROS was adjusted accordingly from
the 25FPS video stream. We have used the DJI drone to record video of a real
crowd that has gathered to attend an open event inside the AUTH campus. The
video footage was captured at DCI 4K resolution and has been resized to Full
HD to reduce computational complexity of the deep neural network inference.

4.2 Results

Figure 3 shows a simulation depicting crowds that are gathered in front of a road
presumably to watch an outdoor sports event, e.g. a bike race. In this simulation,
a drone with a cinematographic camera flies above the 3D scene that contains
the synthetic crowds and captures a video which is then fed to the VSA, thus
producing crowd heatmaps. These are then projected on the 3D terrain and the
obtained crowd polygons are exported in KML and visualized in Google Earth.
The correctness of the crowd polylines created by the projection was verified by
comparing them with ground truth boundaries of the synthetic crowd region on
the terrain. A flat terrain was used in Octomap for the specific application of
our system.

In the real world scenario, the DJI Phantom 4 drone flies and captures video
footage of a crowd that was gathered in the AUTH chemistry square (Figure
4a). The sequence of video frames was fed in the VSA module that had hosted
the crowd detector FCNN which produced heatmaps (Figure 4b). This crowd
prediction was subsequently projected and led to the simplified polygon depicted
as green in the Google Earth environment (Figure 4c), used to visualize the
results. The projection task used the Octomap terrain that is presented in Figure
4d. The camera intrinsic and extrinsic parameters as well as the drone position
are obtained by subscribing to ROS topics, which have been emulated to publish
the contents of the DJI log file.

5 Conclusion and Future Work

In this paper we present a system that annotates maps automatically with se-
mantic knowledge that has been extracted from video frames using a deep neural
network. We have implemented the system in ROS for the scenario of discovering
crowds through analysis of UAV video frames and projecting them as regions on
its navigation map. Our proposed three stage software pipeline can be reused
for additional semantic classes like landing zones, water, roads and tree ranges.

® https://www.dji.com/phantom-4/info
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Human Crowd Detection
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Semantic Crowd Projection in KML
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Fig. 3. Application of our system using synthetic crowd scenes and simulated drone
sensor data in UE4 and AirSim. Left: Source video frame. Right: Respective heatmap
at the output of the FCNN. Bottom: Visualization of the KML annotations (green)
over ground truth locations of crowd (gray)

(c) (d)
Fig. 4. Application of our system using real crowd scenes: (a) Source video frame,
(b) Respective crowd heatmap, (¢) 3D crowd region projection as depicted in Google
Earth, (d) Respective 3D geometric map of the location in Octomap
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Moreover it can interface with any geographic information system or web appli-
cation through the implementation of appropriate interchange formats. Future
work will include the creation of a dataset that will contain real crowd images
and corresponding sensor data. The dataset will have ground truth annotations
of the crowd regions defined by GPS coordinates. These will be used to evaluate
the projection accuracy using common metrics like intersection-over-union (IoU).
Furthermore we plan to use deep learning models for semantic image segmen-
tation that can provide multiple heatmaps for a given scene, assisting the UAV
navigation through semantic understanding of dynamic real-world environments.
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