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Abstract—Online knowledge distillation has been proposed
as an auspicious approach for circumventing the flaws of the
conventional offline distillation (i.e., complex, and computation-
ally and memory demanding process). In this work, a novel
online self-distillation method, named Multilayer Online Self-
Acquired Knowledge Distillation (MOSAKD), is proposed, aiming
to develop fast-to-execute and effective models that can comply
with applications with memory and computational restrictions,
e.g., robotics applications. The MOSAKD method is able to
mine additional knowledge both from the intermediate and the
output layers of a deep neural model in an online fashion. To
achieve this goal, k-nn non-parametric density estimation for
estimating the unknown probability distributions of the data
samples in the feature space generated by any neural layer is
used. This enables us to compute the soft labels that explicitly
express the similarities of the data with the classes, by directly
estimating the posterior class probabilities of the data samples.
The experimental evaluation on four datasets, including a dataset
of synthetic images, indicates the effectiveness of the MOSAKD
method and the superiority over existing online distillation
methods.

I. INTRODUCTION

Deploying state-of-the-art Deep Learning (DL) models on
embedded systems is accompanied by specific computation
requirements. Knowledge Distillation (KD), [1] has been rec-
ognized as a promising approach to address this issue. The
typical KD (also known as offline distillation) refers to the
process where the knowledge acquired in a -usually- powerful
teacher model is transferred to a faster and lightweight student
model. To do so, the student model is trained to mimic the so-
called soft labels produced by the teacher. These soft labels
reveal the similarities of the data with the classes. Among
KD methods, we distinguish a subcategory, the so-called self-
distillation methods, where the knowledge is transferred to a
model of same capacity as the teacher [2], [3].

Even though, KD achieves to provide a solution for effec-
tively training lightweight and fast models, it still suffers from
some shortcomings. That is, even in its simpler approach, KD,
due to the multiple stages of the training procedure (i.e., train-
ing first a complex model and transferring then the knowledge
to a faster one) is a time-consuming, and computationally and
memory demanding process. Thus, another line of research
attempts to circumvent theses flaws by developing distillation
methods that simplify the training pipeline in a single stage.
That is, online KD describes the procedure where the teacher

and the student models are trained concurrently, i.e., without
the stage of pre-training the teacher model.

Several online KD methods have been proposed in the
recent literature [4], [5]. For example, multiple student models
teach each other throughout the training process, in [6]. In
this work, we propose a single-stage online self-distillation
method, named Multilayer Online Self-Acquired Knowledge
Distillation (MOSAKD), for ameliorating the performance
of any deep neural model, regardless of their capacity, for
classification tasks. The overarching motivation of this work
is to effectively train fast and lightweight models with an
extra supervision, apart from the regular supervised loss, that
reveals further knowledge beyond the hard labels, from the
model itself and also in an online fashion, so as to mitigate
the inherent flaws of offline KD caused by the multi-step
training pipeline. The idea of this work is also based on the
two following remarks: First, it has been shown that useful
information can also be mined by transferring the knowledge
from a teacher of identical capacity with the student [2],
that is, not necessarily more powerful teacher. Second, it
has been shown that compact models usually have the same
representation capacity as their heavier counterparts, being
however harder to be trained [7].

Thus, to accomplish our goal, based on [8], we propose
to use the k-nn non-parametric density estimation in order
to estimate the unknown probability distributions of the data
samples in the feature space generated by any neural layer,
that is either by intermediate layers or by the output layer.
In this fashion, we are capable of directly estimating the
posterior class probabilities of the data samples, based on the
neighborhood of each sample, and use them as soft labels. The
produced soft labels explicitly express the similarity of each
sample with all the classes. It should be emphasized that the
proposed method is able to acquire additional knowledge from
any layer, and, as shown, useful information can be distilled
even from the shallower layers.

The experimental evaluation on four datasets validates
the effectiveness of the MOSAKD method. Among them,
a synthetic dataset for discriminating between humans and
non humans has been created. Synthetic data has become an
increasingly useful tool in training DL models, accompanied
by a series of benefits [9] with a wide range of robotics
applications, e.g., [10]–[12]. In this work, since we are fo-



cusing on robotics applications, we use a fully convolutional
model which is capable of operating in real-time (25 Frames
Per Second - FPS) utilizing a low-power GPU [13] for high
resolution input. The target is to provide semantic heatmaps of
human presence on real data. That is, we train the real-time
model using the proposed online distillation method on the
synthetic data (only 100 real human images were used), and
we test the model on unseen images that contain real humans,
providing semantic heatmaps, as explained in [13].

The rest of the manuscript is organized as follows. Section
II discusses relevant online distillation works. Section III
presents in detail the proposed MOSAKD method. Subse-
quently, in Section IV the experiments conducted to evaluate
the MOSAKD method are provided, and finally the conclu-
sions are drawn in Section V.

II. PRIOR WORK

In the recent literature, several works proposing online dis-
tillation have been proposed. Firstly, co-distillation ameliorates
the classification accuracy by training multiple copies of a
given model in parallel, by introducing a distillation term to
the loss function of one model in order to mimic the average
prediction of the rest models in [14]. Next, multiple student
models teach each other during the training procedure in [6].
More specifically, every student, apart from the supervised
loss, is trained with a distillation loss that matches each stu-
dent’s posterior class probabilities with the class probabilities
of the rest students.

Subsequently, in [15] identical branches of a given network
create a multibranch version of it. Each branch constites an
independent classification model which shares shallow layers.
In this way, a strong teacher model is built employing a gated
logit ensemble of the aforementioned branches. A supervised
loss and a distillation loss are used to trained each branch.
Next, [16] proposed a framework of collaborative learning
where several classifier heads of the same network are trained
on the same training data, concurrently. A population of
classifier heads is generated throughout the training procedure,
where each head, apart from the hard labels, learns from the
soft labels which were generated by the whole population.

Additionally, an online distillation method which combines
the previous works [6] and [15] is proposed in [17]. The
method proposes an online mutual knowledge distillation
method for ameliorating the performance of both the fusion
module and the sub-networks. More specifically, when iden-
tical sub-networks are used, the low level layers are shared,
and a multi-branch architecture similar to [15] is used, while
when different sub-networks are used, the sub-networks are
trained similar to [6].

Next, a method that aims at recovering the similarities inside
classes performs online subclass self-distillation in [8]. In
addition, [18] proposes a method that considers all models
of various capacities as students and trains them in a single-
stage. Finally, [19] proposes Online Knowledge Distillation
with Diverse peers, a two-level distillation strategy, where two
types of students are involved, i.e., multiple auxiliary peers and

one group leader. Distillation is performed among auxiliary
peers with a strategy for preserving diversity, and then an
ensemble of predictions of these peers is further distilled to
the group leader.

III. PROPOSED METHOD

In this paper, a novel self-distillation method which allows
for developing fast-to-execute and effective models that can
comply with applications with memory and computational
restrictions is proposed. The proposed method is capable
of acquiring additional knowledge about the similarities of
the samples with the classes both from the output and the
intermediate layers of the model and also in an online fashion.

More specifically, a C-class classification problem, and the
labeled data {xi,yi}Ni=1, where xi ∈ <D is an input vector
and D its dimensionality, while yi ∈ ZC corresponds to its C-
dimensional one-hot class label vector are considered. We also
consider, for an input space X ⊆ <D and an output space F ⊆
<C , as Φ(· ;W) : X → F a deep neural network with NL ∈ N
layers, and set of parameters W = {W1, . . . ,WNL

}, where
WL are the weights of a specific layer L, which transforms
its input vector to a C-dimensional probability vector. That
is, for an input vector xi ∈ X , Φ(xi ;W) ∈ F is the output
vector given by the network Φ with parameters W .

Thus, considering a classification problem, our goal is to
mine additional knowledge from the model itself in an online
fashion. To accomplish this goal, we propose to use k-nn
non-parametric density estimation [20] in order to estimate
the unknown probability distributions of the data samples in
the feature space generated by any neural layer, that is either
any intermediate layer or the output layer. The idea of non-
parametric density estimation is based, in general, on the fact
that the probability P that a vector x will fall in a region
R is given by: P =

∫
R
p(x′)dx′. Thus, P is a smoothed

version of the density function p(x) and this smoothed value
of p can be estimated by estimating the probability P . If we
consider that N samples {xi}Ni=1 are drawn independently and
identically distributed according to p(x), then the probability
that k of these N lie inside in R is given by the binomial
law: Pk =

(
N
k

)
P k(1 − P )N−k, and the expected value for k

is given by: E[k] = NP.
In addition, this binomial distribution for k peaks very

sharply around the mean [20], hence we expect that the ratio k
N

will be a good estimate for the probability P , and hence for
the smoothed density function. The estimate becomes more
accurate as N increases. Making also the assumption that
p(x) is continuous and the region R is so small that p does
not significantly vary within it, we arrive at the equation:∫
R
p(x′)dx′ ' p(x)V, where x is a point within R and V is

the volume enclosed by R. By combining previous equations
the following estimate for p(x) results: p(x) =

k
N

V .
This equation can be, in general, exploited in two different

manners: either to define the number of nearest neighbors, k,
and to adjust the volume V from the data, which stands for
the k-nn density estimation, or to define the volume V and to
observe how many points k fall into the region, which gives



rise to the parzen windows. The essential advantage of the first
approach is that it allows for directly estimating the posterior
probabilities P (cm|x) of the class being cm, m = {1, · · · , C},
from a set of N labeled data by using the samples to estimate
the densities involved. To do this, we apply the k-nn density
estimation to each class separately and then we make use of the
Bayes rule. More specifically, assuming that we have a dataset
consisting of Nm samples that belong to class cm, with N
samples in total, so that

∑
mNm = N , and we place a sphere

of volume V around x and capture k samples, km of which
belong to the class cm. Then, the estimate for the probability
p(x|cm) is: p(x|cm) = km

NmV , and similarly the unconditional
density is given by: p(x) = k

NV , while the priors can be
approximated by: P (cm) = Nm

N .
Therefore, we use the Bayes rule to compute the posterior

class probabilities:

P (cm|x) =
p(x|cm)P (cm)

p(x)
=

km

NmV
Nm

N
k

NV

=
km
k
. (1)

Thus, considering the output of a specific layer, L, and for
a specific number of nearest neighbors in terms of Euclidean
distance, k, at the feature space generated by the layer L,
the posterior probabilities can be estimated and used as soft
labels. These soft labels explicitly encode information about
the similarities of the samples with the classes. That is, the
soft label for a sample i is given by:

sLi =
[kL1
k
,
kL2
k
, . . . ,

kLC
k

]
, (2)

where kLm, m = {1, · · · , C} is the number of nearest neigh-
bors that belong to the class cm, m = {1, · · · , C} at the layer
L.

Therefore, considering the regular classification task, in
the MOSAKD training procedure, the goal is to find the
parametersW∗ that minimize the overall loss of cross entropy,
`ce, between the output vector φ(xi ;W) and the one-hot class
label vector yi, and self-distillation, `sd between the output
vector φ(xi ;W) and the soft-label vector sLi (Mean Squared
Error is used as self-distillation loss in our experiments). That
is:

W∗ = arg min
W

N∑
i=1

[`ce
(
yi,Φ(xi ;W)

)
+ λ`sd

(
sLi ,Φ(xi ;W)

)
],

(3)
where λ controls the relative importance between the two
losses. Note that this online distillation strategy can be applied
to any layer separately, but also to two (or more) different
layers at the same time. In the latter case, two (or more)
distillation losses are added to the overall loss.

Thus, to recap the proposed MOSAKD training pipeline:
the input images are introduced to the network and for each
image the predictions for belonging to each of the classes are
generated. Concurrently, based on the neighborhood of each
image, the soft labels are computed considering the feature
space generated by a specific neural layer, according to the
process described above. Then, the network is trained using
the cross entropy loss with the hard labels, and concurrently

Fig. 1: MOSAKD Training Process: The input images are
propagated to the network, and for each sample the predictions
for belonging to each of the classes are produced. Concur-
rently, considering a specific layer the soft labels are computed
based on the neighborhood of each sample in the feature space
generated by the specific layer. Then, the network is trained
at the same time using the cross entropy loss with the hard
labels and using the distillation loss with the generated soft
labels.

using the distillation loss to regress the produced soft labels,
encouraging it to regard the similarity of each sample with
the classes. In this way, we expect that the model will learn
to better generalize, improving its classification accuracy. The
MOSAKD training process is also illustrated in Fig. 1.

IV. EXPERIMENTS

A. Datasets

Four datasets are utilized in order to evaluate the ef-
fectiveness of the MOSAKD method: Cifar-10 [21], Street
View House Numbers (SVHN) [22], Tiny ImageNet 1, and
Synthetic Human datasets. We use the experimental setup that
is followed in each utilized dataset, regarding the train-test
split: in the case of Cifar-10, 50,000 images are used as train
set and 10,000 images as test set, in the case of SVHN,
we use 73,257 train images and 26,032 test images, while
Tiny ImageNet consists of a training set of 200 classes, each
containing 500 images, and a validation set consisting of 50
images.

The Synthetic Human dataset consists of real background
images populated with 3D human models in various poses.
The human models were generated using PIFu [23], which is
a state-of-the-art method for generating realistic 3D human
models from single-view images. Overall, the dataset con-
tains 133 human models, generated using full-body images
of people from the Clothing Co-Parsing (CCP) [24] dataset
as PIFu’s input. The background images were taken from
the Cityscapes [25] dataset that contains video sequences
depicting street scenes in various cities. To accomplish a
higher level of realism, the 3D human models are placed on
potential 2D image locations (e.g., roads, pavements), based on

1https://tiny-imagenet.herokuapp.com/



coarse annotations for semantic image segmentation provided
by Cityscapes.

Since, the target is to train models that can run in real-time
on high-resolution input for producing heatmaps of human
presence [13], we crop the generated images, and we create
a train set of 19,900 synthetic cropped images containing
humans and 100 real images depicting humans, which are
derived from the CUHK Person Re-identification datasets [26],
[27]. Furthermore, the train set contains 20,000 non human
images, cropped from images of the Cityscapes dataset. The
test set consists of 5,000 real images containing humans
and 5,000 real images without humans, cropped from video
frames that were gathered by querying YouTube video search
engine with random keywords. The cropped images are of size
64× 64.

B. Model Architectures and Utilized Layers

The objective of this work is to assess the effect of the
proposed MOSAKD method on training lightweight models
that can be effectively deployed on embedded devices. To-
wards this end, we first utilize mainly lightweight models
(apart from the case of Tiny ImageNet dataset, since it is
more challenging). More specifically, in the case of Cifar-10
and SVHN datasets, a lightweight five-layer CNN model is
utilized, comprising of 63K parameters. The first two layers
are convolutional with 6 filters of size 5 × 5 and 16 filters
of size 5 × 5 respectively, while the last three layers are
fully connected (128 × 64 × 10). A 2 × 2 max-pooling layer
with a stride of 2 follows the convolutional layers. In the
performed experiments we use all the layers for computing the
soft labels. The first convolutional layer is denoted as Layer 1
in the experimental results, and correspondingly the last fully
connected layer is denoted as Layer 5.

In the case of Tiny ImageNet dataset, we use a more
powerful model, i.e., ResNet-50 [28] (without utilizing any
pre-trained model). This also validates our claim that the
proposed MOSAKD method is model agnostic. In our ex-
periments, we use the last fully connected layer denoted as
Layer 5, and the output of the four convolutional blocks before
the aforementioned last fully connected layer, where the last
convolutional block is denoted as Layer 4, and so on.

In the case of Synthetic Human dataset, we use the fully
convolutional lightweight VGG-1080p model [13] compris-
ing of 11K parameters. The model, which consists of five
convolutional layers, runs in real-time for input 1080p on a
low-power Jetson TX-2. We use all the convolutional layers
for the soft labels computation, where the first convolutional
layer is denoted as Layer 1 in the experimental results, and
correspondingly the last convolutional layer is denoted as
Layer 5.

Finally, we use Wide ResNet 20-8 (WRN-20-8) model [29]
in order to compare the MOSAKD method with state-of-the-
art online KD approaches on Cifar-10 dataset. In the performed
experiments, we use the last fully connected layer denoted as
Layer 4, and the output of the four convolutional blocks before

the last fully connected layer, where the last convolutional
block is denoted as Layer 3, and so on.

C. Experimental Setup and Evaluation Metrics

In this work, four set of experiments are performed. First,
the performance of the MOSAKD method using different
layers of the utilized models, and different numbers of nearest
neighbors, k, in eq. (2) (i.e., 8, 12, and 16) for computing
the soft labels, using mainly lightweight models is evaluated.
Classification accuracy is used as evaluation metric (each
experiment is repeated five times, and the mean value of clas-
sification accuracy and the standard deviation are reported). In
the second set of experiments, we compare the performance
of MOSAKD with state-of-the-art online distillation methods,
using a more complex and powerful model. Next, in the third
set of experiments, the efficiency of the proposed method
is evaluated utilizing the sum of floating point operations
(FLOPs), and the memory requirements for training. Finally,
in the fourth set of experiments, some qualitative results are
provided using the real-time model. The trained model is
used to generate heatmaps of human presence on real high-
resolution test images.

D. Implementation Details

In this paper, we train our models using the mini-batch
gradient descent with mini-batch of 64 samples, and we set the
momentum to 0.9 and the learning rate to 10−3. Additionally,
we set the parameter λ in eq. (3) for controlling the relative im-
portance between the classification and the distillation losses
to 0.1 for all the datasets except for the Tiny ImageNet where
it is set to 0.01. The method is implemented in Pytorch, and
the models are trained for 100 epochs on an NVIDIA 2080 Ti
with 11GB of GPU memory.

E. Experimental Results

In the following the four sets of experiments are presented.
a) Evaluation using lightweight models: The experimen-

tal results for evaluating the performance of the MOSAKD
method using the lightweight models on the Cifar-10, SVHN,
Tiny ImageNet, and Synthetic Human datasets are presented
in Tables I-IV respectively. The best results, considering the
different utilized layers, for each specific number of nearest
neighbors are printed in bold, while the best performance in
each dataset is also underlined.

From the demonstrated results, it is obvious that MOSAKD
method remarkably ameliorates the baseline performance of
training without distillation on all the utilized datasets, us-
ing different layers and numbers of nearest neighbors for
computing the soft labels. Interestingly, considerably good
performance can be accomplished using the first layers for
the soft label computation, apart from the output layer which
is mainly used in the KD approaches. However, we can not
draw any conclusion on the optimal layer for computing the
soft labels, since it is evident that, depending on the dataset,
both first and output layers convey useful information that
allow for producing reliable soft labels.



In addition, it can be observed that the proposed method
considerably ameliorates the performance on all utilized
datasets regardless of the number of classes. That is, it
ameliorates the performance of 2-class, 10-class, and 200-
class problems. In the case of the latter ones, inherently
rich information about the similarities with the classes can
be conveyed, leading to improved performance. However,
it is evident that the proposed method can acquire useful
information in the case of binary problems too, considerably
improving the performance. This can be attributed to the
contextual information that the soft label reveals.

TABLE I: Cifar-10: Classification accuracy of the proposed
MOSAKD method utilizing different layers and number of
nearest neighbors. Baseline: 64.734%± 0.654%.

Layer
NN 8NN 12NN 16NN

Layer 1 66.076% ± 0.241% 65.818% ± 0.560% 65.994% ± 0.659%
Layer 2 65.660% ± 0.710% 66.756% ± 0.953% 66.423% ± 1.100%
Layer 3 65.752% ± 0.534% 65.318% ± 1.035% 65.856% ± 0.638%
Layer 4 66.176% ± 0.979% 66.561% ± 0.635% 66.468% ± 0.587%
Layer 5 65.729% ± 0.424% 65.962% ± 0.841% 66.570% ± 0.563%

TABLE II: SVHN: Classification accuracy of the proposed
MOSAKD method utilizing different layers and number of
nearest neighbors. Baseline: 88.706%± 0.306%.

Layer
NN 8NN 12NN 16NN

Layer 1 89.393% ± 0.243% 89.175% ± 0.552% 89.283% ± 0.303%
Layer 2 89.619% ± 0.329% 89.275% ± 0.219% 89.568% ± 0.460%
Layer 3 89.606% ± 0.104% 89.644% ± 0.203% 89.736% ± 0.187%
Layer 4 89.256% ± 0.388% 89.612% ± 0.234% 89.708% ± 0.279%
Layer 5 89.318% ± 0.204% 89.560% ± 0.198% 89.422% ± 0.330%

TABLE III: Tiny ImageNet: Classification accuracy of the
proposed MOSAKD method utilizing different layers and
number of nearest neighbors. Baseline: 31.050%± 1.550%.

Layer
NN 8NN 12NN 16NN

Layer 1 31.131% ± 0.876% 31.270% ± 1.022% 31.695% ± 0.724%
Layer 2 31.101% ± 1.120% 31.236% ± 0.551% 32.245% ± 0.527%
Layer 3 31.215% ± 1.020% 31.800% ± 0.811% 31.381% ± 0.741%
Layer 4 32.070% ± 0.600% 31.895% ± 0.635% 31.588% ± 0.788%
Layer 5 31.631% ± 0.519% 31.357% ± 1.045% 31.556% ± 0.643%

TABLE IV: Synthetic Human: Classification accuracy of the
proposed MOSAKD method utilizing different layers and
number of nearest neighbors. Baseline: 97.048%± 0.476%.

Layer
NN 8NN 12NN 16NN

Layer 1 98.275% ± 0.550% 98.192% ± 0.801% 98.223% ± 1.288%
Layer 2 98.096% ± 1.129% 98.322% ± 0.738% 97.914% ± 0.641%
Layer 3 96.814% ± 1.916% 97.084% ± 1.113% 98.046% ± 0.908%
Layer 4 97.264% ± 1.482% 98.192% ± 1.082% 97.404% ± 1.129%
Layer 5 97.946% ± 0.899% 98.268% ± 0.556% 98.376% ± 0.611%

Furthermore, we have performed experiments using differ-
ent values of λ in eq. (3), in order to capture the trade-off
between the main classification and the distillation loss. More
specifically, we performed experiments on Cifar-10 dataset,
utilizing 12NN. The experimental results are illustrated in Ta-
ble V. As it is shown, the proposed online distillation method

TABLE V: Cifar-10 Dataset: Classification Accuracy for dif-
ferent values of parameter λ in eq. (10) using 12NN for the
soft label computation.

Layer λ = 0.1 λ = 0.01 λ = 0.001
1 65.818% ± 0.560% 65.797% ± 0.495% 65.477% ± 0.691%
2 66.756% ± 0.953% 65.202% ± 0.833% 65.472% ± 0.810%
3 65.318% ± 1.035% 65.789% ± 0.632% 65.240% ± 0.880%
4 66.561% ± 0.635% 65.520% ± 1.041% 65.057% ± 0.659%
5 65.962% ± 0.841% 65.840 %± 0.745% 65.729% ± 0.136%

Fig. 2: Cifar-10: Evaluating the classification accuracy
throughout the training epochs utilizing 12NN, and different
layers for computing the soft labels.

provides generally better performance for the highest value of
λ (the bigger the value of λ, the bigger improvement, too),
however it should be emphasized that the MOSAKD method
ameliorates the classification accuracy in all the considered
cases.

Finally, the proposed method, as previously mentioned, can
also be applied on two (or more) different layers at the
same time. In this case, two distillation losses are added
to the overall loss. This strategy can in some cases further
improve the performance accomplished by using each of the
layers separately. For example, in the case of the Cifar-10
dataset, we can achieve classification accuracy 67.118±0.251
by combining the second and fifth layer, using 12NN, which is
the best performance on Cifar-10 dataset. In Fig. 2 the curves
of mean classification accuracy, utilizing 12NN, and various
layers for computing the soft labels are illustrated.

b) Comparison with state-of-the-art: In the second set
of experiments, we compare the proposed method with state-
of-the-art online distillation methods. More specifically, we
utilize the WRN-20-08 model and compare the performance of
the MOSAKD method with the recent OKDDip [19] method,
as well as with DML [6], ONE [15], and CL-ILR [16] meth-
ods. We perform experiments on Cifar-10 dataset. To ensure
the fairness of comparisons, we use the same experimental
settings as in [19]. That is, stochastic gradient descent is used
with Nesterov momentum. The initial learning rate is set to
0.1 and is divided by 10 at 150 and 225 epochs, while the
networks are trained for 300 epochs. Finally, we consider batch
size of 128 samples. The experimental results are provided in



Fig. 3: Heatmap on real-image containing humans utilizing the human detection model trained on synthetic humans.

TABLE VI: Comparison against state-of-the-art online distilla-
tion methods on Cifar-10 utilizing the WRN-20-8 architecture.

Method Classification Accuracy
WRN-20-8 94.73% ± 0.06%
DML [6] 94.96% ± 0.08%
ONE [15] 94.73% ± 0.02%

CL-ILR [16] 94.88% ± 0.16%
OKDDip [19] 95.16% ± 0.07%

MOSAKD - Layer 1 96.00% ± 0.06%
MOSAKD - Layer 2 96.19% ± 0.10%
MOSAKD - Layer 3 96.09% ± 0.07%
MOSAKD - Layer 4 96.01% ± 0.11%

Table VI. As it can be observed from the provided results,
the MOSAKD method significantly improves the baseline, and
achieves superior performance over the state-of-the-art online
distillation methods.

c) Evaluation of efficiency: In the third set of experi-
ments, the efficiency of the MOSAKD method is evaluated.
First, we evaluate the training cost (complexity) utilizing
the FLOPs considering one forward pass. The experiments
are performed on the Cifar-10 dataset, using the WRN-20-
8 model. The MOSAKD method requires 2.46 GFLOPs. To
gain further insights on the efficiency of the proposed method,
we compare the training cost with the most well-known
offline KD methodology, [1]. For the offline KD, the more
powerful WRN-40-8 is used as teacher to mine additional
knowledge. The offline KD method requires 7.64 GFLOPs.
We also emphasize, that apart from the expected superiority
over the offline methodology, due to the fact the proposed
method does not require utilizing a separate teacher model
for realizing the distillation process, the MOSAKD method
is also more cost-effective against existing online distillation
methods, since they use at least two copies of the network
to mine additional knowledge, and hence they require at least
two times more FLOPs than the MOSAKD method.

Finally, the utilized lightweight models are extremely low-
memory demanding, considering the memory required for
training them using the proposed training pipeline. More
specifically, the required memory to train a lightweight model
with the proposed method for example on CIfar-10 dataset
is 920 MiB. To gain some more insights on the efficiency

with respect to the memory requirements, we can compare
the performance of the MOSAKD methodology with the
conventional offline KD using the WRN-20-8 model. The
MOSAKD method requires 2871 MiB, while for training
first the more powerful WRN-40-8 model and transferring
the knowledge to the WRN-20-8 model with the offline KD
methodology are required 7340 MiB.

d) Qualitative Results: Finally, in the fourth set of ex-
periments, we use the proposed trained model on the synthetic
human dataset to produce heatmaps on unseen high-resolution
images that contain real humans. That is, unseen images of size
1920 × 1080 are fed to the network, and for every window
64 × 64 we compute the output of the network at the output
layer. Indicative evaluation results are illustrated in Fig. 3. As
it shown, the model can successfully detect humans on real
images.

V. CONCLUSIONS

In this paper, a novel online self-distillation approach was
proposed, named Multilayer Online Self-Acquired Knowledge
Distillation. The MOSAKD method is capable of acquiring
additional knowledge either from the output or from the
intermediate layers of the model, without modifying it, e.g., by
introducing multiple copies of the model, and simultaneously
in an one-stage training pipeline. Interestingly, it is evident
that apart from the output layer of the model, which is
mainly used in distillation, intermediate layers can also provide
meaningful information. The effectiveness of the proposed
method to ameliorate the classification accuracy of any model,
regardless of their complexity, is experimentally validated on
four datasets, including a synthetic dataset.
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