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Abstract—Recent advances in Deep Neural Networks (DNNs)
led to enormous progress in many different fields, covering a wide
range of applications, including financial time-series analysis.
Many different financial time-series forecasting tasks have been
successfully tackled using such approaches, including predicting
the next day’s return of FOREX currency pairs. However, using
DNNs for such tasks is not always straightforward due to training
stability issues that often arise. Indeed, the noisy nature of the
data can often cause considerable different behaviors between
DL models, despite following the same training process, model
architecture, and hyper-parameters. At the same time, the meth-
ods proposed for generating the training labels can sometimes
further reinforce such issues. All these phenomena can reduce
the reliability of training DL models for financial forecasting
tasks, while also making the training process especially time-
consuming, requiring several validation and back-testing runs. To
overcome these limitations, we propose an ensemble-based online
distillation method that can significantly reduce this behavior.
The proposed method is efficient since, in contrast to offline
distillation approaches, it works in a single step, while it also
allows for reducing the number of hyper-parameters to be
tuned, e.g., the number of epochs for training the teachers.
As demonstrated in the conducted experiments, the soft labels
extracted through the proposed approach can mitigate the effect
of noisy annotation that often exists in FOREX data, leading to
significant performance improvements.

I. INTRODUCTION

Equities, bonds, currencies, and derivatives are traded in
financial markets forming the backbone of the economy.
They serve multiple roles, ranging from enabling commercial
activity between different countries through foreign exchange
currency markets (FOREX) to allowing businesses secure the
required capital to expand and grow. At the same time, finan-
cial markets allow investors to profit through speculation. This
has led to a significant amount of research for analyzing and
predicting the future behavior of various assets, allowing for
taking the appropriate market position that would eventually
lead to profitable trades. Even though the behavior of assets is
determined by many different factors, including external social
parameters and the actions of a large number of investors,
several different methodologies have been proposed to model
the - occasionally irrational - behavior of financial markers.
This is usually achieved through appropriate modelling of the
markets’ behavior using tools that range from traditional quan-
titative analysis to modern machine learning methodologies.

Indeed, many tools have been developed to effective fore-
cast and analyze financial markets, leading to an increasing
participation of machine learning-based agents in financial
markets [1]. The preceding difficulties have been tackled to
a great degree by the development of Deep Learning (DL)
tools [2], that enabled automated agents to exploit the vast
amount of data collected from financial markets, outperform-
ing to a significant degree the methods used until then [3]–
[7]. A wide range of different methods have been used to
this end, ranging from supervised learning approaches using
Convolutional Neural Networks (CNNs) and Long Short-Term
Memory (LSTM) recurrent neural networks (RNNs) [8], [9]
to Deep Reinforcement Learning (DRL) methodologies [10],
[11]. Recent literature also attempts to fuse multimodal infor-
mation by incorporating additional information sources, such
as information extracted from natural language processing and
sentiment analysis of news articles, social media [12]–[14] and
keyword trends of internet search engines [15], [16], to enable
for even more accurate forecasts.

The aforementioned methods approach the problem of fi-
nancial trading by employing different problem formulations
and model architectures. However, most of them are vulnerable
to the excessive noise that often exist in financial data and
usually reduces the stability when training neural networks.
Often, this can lead to overfitting the training data, which can
negatively impact the ability of the models to generalize to
unseen data. This can be attributed to the existence of many
almost equivalent hypotheses that can fit the training data,
which can lead to very different predictions for the test data.
To better demonstrate this behavior, we have conducted an
experiment where we trained a DL-based agent to predict the
next day’s return of the EUR/USD currency. The evaluation
results are reported in Fig. 1, where we plotted the results
in unseen data for the exact same residual CNN architecture
for five different training runs. The only difference between
the experiments is the used seed. It is worth noting that even
though all agents have the same architecture and they are
trained on the same data, they end up having different behavior
during (and after) the optimization. Indeed, the best agent
can achieve a PnL of almost 10%, while the worst one can
reach a PnL of -10% during the optimization. We also observe
similar instabilities for the test accuracy. Such behavior makes
training a DL-based agent for financial trading much more
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Fig. 1: Comparing five different training runs using different initializations of the same deep residual CNN. Both the forecasting
accuracy and profit and loss (PnL) in the test set are reported. These experiments demonstrate the instabilities arising from the
noisy nature of financial data when training DL models for financial forecasting tasks.

difficult compared to standard approaches that are typically
followed in other domains, e.g., computer vision. Employing
various regularization methods, such as dropout [17], weight
decay [18] or using smaller networks [19], do not usually
allow for significantly reducing these phenomena. Formulating
trading as a classification task, where the model decides
between when to buy or sell an asset (or in some formulations,
also to exit the market) can make the learning problem easier
compared to regressing the exact price of an asset. However,
at the same time, it introduces an additional hyper-parameter
for generating the ground truth labels, i.e., selecting which
price movements should be assigned to each of the two/three
classes.

In this work, we suggest that these phenomena can be
partially attributed to the noise that exists in the annotations
of the data. For example, two input data samples that are
similar can often have different ground truth annotations (e.g.,
regression targets or labels). Indeed, this is often the case when
due to external causes, e.g., government announcements, the
price of an asset can move in vastly different directions. In
this paper, we conjecture that the noise in data annotations
can reduce the performance of DL agents trained for financial
tasks. Another source of such behavior is the chaotic nature
of some financial time-series [20]. These phenomena are
often recognized in recent literature, even though not always
clearly stated. For example, the development of handcrafted
labels, which are usually produced by assigning a class to
each sample based on some criterion, e.g., [3], [4], can be
considered as a way to reduce the impact of noisy labels.
Indeed, when the threshold for the classes is correctly selected,
these approaches can mitigate these effects. However, the
core issue remains: when two similar input samples carry
different annotations, the network is forced to overfit the noise
component of the data, learning highly nonlinear decision
surfaces that can fit the input training data. Some other recent

approaches employ distillation schemes to reduce the impact
of noisy labels by mimicking the annotations extracted from
other DL models [21], [22]. Another line of research includes
introducing prior knowledge, e.g., as extracted from human
indicators, into the training process to remove non-stationary
noise [23]. However, these methods typically require using
human annotations, which can be especially hard to acquire.

The main contribution of this paper is an online distilla-
tion scheme that can be used to mitigate the effect of the
aforementioned phenomena. The proposed method allows the
ground truth labels to shift, reducing in this way the noise
that often exists in the ground truth data. To this end, the
proposed method builds upon knowledge distillation, where an
ensemble of multiple teachers is trained using the original, yet
potentially noisy, labels. Then, this ensemble is used to extract
the updated and filtered annotations that will be used for
training the student models. Even though using an ensemble of
multiple teacher models enables us to more reliably estimate
the ground truth annotations, it also significantly increases
the training complexity. Indeed, the training process is now
a two-step process, which includes first training the teachers’
ensemble and then using the extracted annotations to train the
final model. To overcome this limitation, we propose employ-
ing an online training setup, where the teachers’ ensemble is
trained simultaneously with the student model. In this way,
the proposed method is significantly easier to apply, since it
does not require separately training the teacher and student
models, allowing for training all models in just one step. This
also reduces the impact of some hyper-parameters, e.g., the
number of training epochs for the ensemble, since all models
are trained at the same time. To the best of our knowledge, the
proposed method is the first online ensemble-based financial-
oriented distillation scheme that is implemented in an end-
to-end pipeline allowing for performing one-step distillation
overcoming the need for time-consuming two-stage training



pipelines (e.g., [21], [22]). We have conducted extensive
experiments on large-scale FOREX datasets that include 37
different currencies, demonstrating that the proposed method
can significantly improve the accuracy of financial forecasting
and trading.

The rest of the paper is structured as follows. First, we
introduce the necessary background, along with the proposed
method in Section II. Then, we provide the experimental
evaluation and discuss the obtained results in Section III.
Finally, Section IV concludes the paper.

II. PROPOSED METHOD

In this Section we first provide the necessary background
on financial trading and training DL agents. Then, we present
and discuss the proposed method for online distillation for
financial trading.

This work focuses on DL-based models that work by map-
ping an input x ∈ RN to an output y ∈ RC , i.e., y = fW(x),
where N denotes the input dimensionality, the notation C
is used to refer to the dimensionality of the output space
and W denotes the trainable parameters of the DL model.
For the rest of this Section we will focus on classification
tasks, where usually the so called one hot encoding is used,
i.e., each class is mapped into an output neuron, which
estimates the probability of each input sample belonging to the
corresponding class. We also use the Open–High–Low–Close
(OHLC) price level technique for encoding the input data,
reducing the trading data into four values for a specified time
interval. This is without loss of generality, since the input can
be provided in any form to the network.

Using OHLC candlesticks allows for providing a clear
picture of the price movement in every interval. The daily
returns for every currency pair, when OHLC candlesticks are
used, can be calculated as:

Rt =
Po,t+1 − Po,t

Po,t
, (1)

where Rt denotes the daily return value, Po,t+1 denotes the
next day’s open price and Po,t denotes the current day’s open
price. We also focus on solving a price direction forecasting
problem instead of regressing the exact price of an asset,
following the models used in the recent literature on financial
trading [3], [4]. The daily return Rt+1 is calculated for the
next day and then we generate the ground truth labels using
three possible price directions (up, down, and stationary).
These directions define the three classes that dictate the agent’s
actions, i.e., buy, sell or exit the market. It is worth noting
that we employed a three-class formulation, which enables
us to account for commission fees and price slippage, given
that appropriate return thresholds have been defined. The class
label for the t-th timestep can be then defined as:

lt =


0, if Rt < −rdown (sell)
1, if Rt > rup (buy)
2, otherwise (exit)

, (2)

where rdown and rup are used to define the return thresholds.
Afterwards, we can use the cross-entropy loss for training the
network as:

H(y, l) = −
C∑
i=1

[l]i log([y]i), (3)

where the one hot encoding of the label of a training sample
is denoted by l, while [x]i denotes the i-th element of a vector
x. Gradient descent-based algorithms, such as Adam [24], can
be then used for optimizing the network.

Recent findings in the literature have already highlighted
the positive effect of using knowledge distillation approaches
for training trading agents using deep refinement learning
tasks [21], [22]. Knowledge distillation is a method that
enables training student models under the supervision of a
stronger teacher network. The soft outputs produced by the
teacher are more informative about the data than standard hard
labels, as they are enriched with information about hidden
data similarities, and can be used to more efficiently train
the student network. Even though distillation methods were
originally proposed for model compression purposes, transfer-
ring the knowledge from a large and complex neural network
into smaller and more efficient ones [25], [26], the knowledge
distillation process can also introduce a regularization effect
that allows for improving the accuracy of various models.

Let y(T ) = fT,WT
(x) ∈ RC denote the teacher network

and y(S) = fS,WS
(x) ∈ RC denote the student network,

where the notation WT and WS is used to refer to the
trainable parameters of these models. To avoid cluttering the
used notation, we will directly refer to these models by using
their output, i.e., y(T ) and y(S). Strong teacher models usually
overfit the data and tend to be very confident regarding their
predictions. As a result, valuable class similarity information
can often diminish as values close to one and zero are pre-
dicted by the teacher models. This issue is resolved by neural
network distillation by using a temperature hyper-parameter in
the softmax function:

[y(T,soft)]i =
exp([z(T )]i/M)∑
j exp([z

(T )]j/M)
, (4)

where the notation [y(T,soft)]i is used to refer i-th class’s
probability, as estimated by the teacher network, [z(T )]i are
the logits of the teacher network and M is used to refer to the
temperature hyper-parameter. Note that the regular softmax
function can be recovered if M = 1 is used. Using higher
temperature allows for generating softer distributions that
provide more information regarding the similarities between a
data sample and different classes. However, it is worth noting
that increasing the temperature is only necessary when the
teacher network is overly confident and it is not required for
more difficult tasks or when smaller teachers are used [27].

The student network can be then optimized using both
the probabilities extracted from the teacher network and the



ground truth labels. Therefore, the loss function used for
distillation is defined as:

LKD = αSH(y(S,soft),y(T,soft)) + αHH(y(S), l) (5)

where y(S,soft) denotes the softened output of the student
network after raising the temperature of the softmax function
to M , while y(S) denotes the regular output of the student
network, i.e., when temperature is set to M = 1. Also, αS

and αH denote the weight of the soft labels (distillation loss)
and the hard ground truth labels (regular cross entropy) in the
training process.

In this paper, we directly rely on the soft labels generated
by the teacher model, since the original labels are noisy, neg-
atively affecting the training process. In addition, to provide
a more reliable estimation of these soft labels, we propose
employing an ensemble of smaller teacher models instead of
a larger teacher model. This can allow for extracting a more
reliable estimation, since one powerful teacher can overfit
and overestimate the probability of the correct class [21].
Handcrafted labels and customized class splits in financial
time-series classification tasks also come with a discontinuity
problem, since there will always exist very similar data that
eventually belong to different classes, e.g., one with next day’s
return 0.53% and another with 0.55%. Using soft labels allows
for overcoming this discontinuity by allowing the teacher
model to generate new ground truth targets, minimizing the
negative effects that can arise from forcing the model to learn
such highly nonlinear phenomena and potentially intensifying
overfitting issues.

To this end, we first train a set of teacher models for a
predefined number of epochs using the hard ground truth labels
l. The regular cross-entropy loss can be used for training the
teachers:

Lk = H(y(T,k), l), (6)

where y(T,k) refers to the output of the k-th teacher. The final
soft labels of the ensemble are calculated as the average of
the probability distribution output of all teachers as:

y(T,soft) =
1

K

K∑
t=1

y(T,k), (7)

where K is the total number of teacher networks. Then, the
student model is trained by directly using these soft labels as:

LKD,en = H(y(S,soft),y(T,soft)). (8)

In our work the teacher and student models use the same
architecture, while the only difference between them is their
initialization. However, this is without loss of generality,
since the proposed method can be also employed for models
that have different architectures, given that the final output
dimensionality (number of classes) is the same for different
models.

The aforementioned process can improve the accuracy of the
models, as we also experimentally demonstrate in Section III.
However, it is computationally intensive, since it requires
first training the teacher ensemble and then proceeding with

Fig. 2: We used a walk forward setup to evaluate all methods.
For each split, we used five years for training and one year
for backtesting.

training the student model. This process also introduces an
additional hyper-parameter to be tuned: the number of epochs
that the teacher models will be trained for. Specifying this
hyper-parameter for financial trading problems, where DNNs
tend to overfit from the very first epoch, is not a trivial task and
can affect the performance of the student model. In this work,
we propose employing an online distillation scheme to over-
come this limitation. To this end, we propose simultaneously
training the teachers’ ensemble and transferring the knowledge
to the student model. Therefore, we apply (6), (7), and (8)
on-the-fly by simultaneously training both the teacher and the
student models. The proposed pipeline can be summarized as
follows:

1) First, train each of the teacher model using the hard
labels l.

2) Then, aggregate the output of the ensemble to form the
soft targets that will be used for training the student
model.

3) Finally, train the student for one epoch using these
targets.

4) The previous three steps are repeated for a total of N
training epochs.

III. EXPERIMENTAL EVALUATION

The experimental evaluation of the proposed method is
provided in this Section. First, we describe the used datasets,
feature extraction procedures, as well as the architecture of
the employed agents. Then, we proceed by performing several
experiments to examine the effect of performing both offline
ensemble-based distillation, as well as the proposed online
distillation approach. For all evaluation experiments, we used
the same hyper-parameters and network architectures, altering
only the distillation methodology, to ensure a fair comparison
between different methods.

We used FOREX trading data that belong to 37 dif-
ferent currencies, such as EUR/USD, CHF/JPY, GBP/CAD,
USD/NOK. The trading data were collected in the pe-
riod of 2010-2019, while they were sub-sampled using the
Open–High–Low–Close (OHLC) price level technique using
daily candles. A total of 114,234 samples were collected using
this approach. For the evaluation we also employed a walk
forward setup using five train/test splits, as shown in Fig. 2.
Each train split consists of five years of train data and one year
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Fig. 3: Comparison (test PnL and accuracy) between DL agents trained with a) hard labels, b) plain distillation and c) online
distillation.

of test data. For example, the first train split contains data from
2010 to 2014 and the evaluation is performed on 2015, the next
train split contains data from 2011 to 2015 and the evaluation
is performed on 2016, etc. For each experiment we evaluated
the performance of each method on all these splits, unless
otherwise noted. The average classification accuracy and PnL
on the test set is reported for all the conducted experiments.
The PnL metric corresponds yearly percentage of gains or
losses that were achieved based on the trading decisions. For
example, a 10% PnL for an initial investment of 100$ would
lead to a total of 110$. On the other hand, the same initial
investment with -4% PnL would become 96$. Both testing
accuracy and PnL are frequently measured during the training
iterations. In this way, we are able to provide more details
regarding the stability of the agents during the training process,
as well as their performance in unseen data. Note that a small
moving average filter was applied on all the provided plots
in order to improve their readability. Also, a commission of
5 ∗ 10−5 per trade was used for the calculation of the PnL.

The input to the DL models consist of a window of W = 30
daily return values. The models were also trained to perform
trading using all available data, i.e., we did not train separate
agents for each currency pair. Instead, we train each network
using data from all currency pairs and we do report the
average accuracy and PnL over the 37 available currencies.
Furthermore, we used standardization scaling to normalize the
input data, leading to data with zero mean and unit variance.
Regarding label extraction, the thresholds rup and rdown in
(2) were selected in such a way so that all classes will be
perfectly balanced in the training set, i.e., 1/3 of the data will
have the label buy, 1/3 of the data will have the label sell and
1/3 of the data will have the label exit, in order to avoid class
imbalance issues.

The network architecture used for the conducted exper-
iments was based on a residual network that consists of
two blocks. More specifically, each block consists of three

convolutional layers. The first convolutional layer and the first
residual block use a kernel size of 5, while the stride was set
to 1. For these layers we used padding equal to 2. For the last
residual block we used a kernel size of 3, while the stride was
set to 1 and padding of 1 was used. All convolutional layers
have 35 filters and are followed by batch normalization and
ReLU activation functions. Then, average pooling (stride 3) is
applied to this representation, which then is fed into a fully
connected layer followed by the softmax activation function
with temperature M = 1. The output of the model corresponds
to the probability distribution over the three available actions,
i.e., buy, sell, exit. The Adam optimization algorithm [24]
using its default hyper-parameters and a learning rate of 0.0004
was used for training all models. Finally, we used a batch size
of 512, while we regularized all models using weight decay
equal to 0.5.

First, we evaluate the impact of using an offline variant of
the proposed knowledge distillation approach. An ensemble
of five teachers was used to this end. Each of the agents was
trained for 10 epochs using the ground truth labels. The output
of each of the training agents was averaged and then used to
train the student agent, as described in Section II. We report
the PnL and accuracy for three different evaluation setups
in Fig. 3. The aforementioned distillation process is denoted
by “Distillation” in this Figure. Using this approach, we can
significantly improve both the profitability, as well as the
accuracy of the agents, compared to the baseline agent that was
trained with hard labels. The regularization effect arising from
using knowledge distillation is especially evident, since the
baseline agent transits into an overfitting regime in less than
10 epochs. Then, we proceeded with evaluating the proposed
online distillation methodology. This method is denoted by
“Online Distillation” in Fig. 3. As the experimental results
suggest, using online distillation leads to faster convergence.
At the same time, the positive regularization effect arising
from distillation is maintained, while we can even achieve



slightly better performance compared to offline distillation. At
the same time, the proposed method allows to train the agents
more easily, since it consists of a single-step pipeline. More-
over, it allows for reducing the number of hyper-parameters
that need to be tuned, since the teachers are trained along
with the students, removing the dependency on the number of
epochs used for training the teachers’ ensemble.

IV. CONCLUSIONS

In this paper, we proposed a novel online distillation method
to transfer the knowledge from an ensemble of teacher models
into one single student model, allowing to reduce the effect of
noisy labels that often exist in financial forecasting tasks. The
experimental results suggest that a teachers’ ensemble, which
was trained with potentially noisy labels for a predefined
number of epochs, can be successfully used to extract the new
ground truth annotations, based on which the student network
was trained. In this way, we were able to extract more reliable
estimations for the final ground truth annotations, reducing
the impact of the existing noisy labels. To further improve the
computational complexity of the proposed method, we em-
ployed an online training setup, where the teachers’ ensemble
was trained together with the student model. As a result, the
proposed method was significantly easier to apply, since it
does not require separately training the teacher and student
models, reducing the whole process to just one single-step
training pipeline.

It is worth noting that the proposed method can be still
affected by the noise that exists in the training labels, since
the teachers’ ensemble is trained using these annotations. The
effect of this noise can be potentially further reduced by
employing self-distillation approaches for the teacher mod-
els [28]. Such approaches could help further increase the ac-
curacy of the resulting models, without significantly affecting
the training or inference complexity of the proposed method.
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