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Abstract. The computationally demanding nature of Deep Learning
(DL) has fueled the research on neuromorphics due to their potential
to provide high-speed and low energy hardware accelerators. To this
end, neuromorphic photonics are increasingly gain attention since they
can operate in very high frequencies with very low energy consumption.
However, they also introduce new challenges in DL training and deploy-
ment. In this paper, we propose a novel training method that is able to
compensate for quantization noise, which profoundly exists in photonic
hardware due to analog-to-digital (ADC) and digital-to-analog (DAC)
conversions, targeting photonic neural networks (PNNs) which employ
easily saturated activation functions. The proposed method takes into
account quantization during training, leading to significant performance
improvements during the inference phase. We conduct evaluation exper-
iments on both image classification and time-series analysis tasks, em-
ploying a wide range of existing photonic neuromorphic architectures.
The evaluation experiments demonstrate the effectiveness of the pro-
posed method when low-bit resolution photonic architectures are used,
as well as its generalization ability.

Keywords: Photonic Neural Networks · Neuromorphic Computing ·
Neural Network Quantization

1 Introduction

Over the recent years, the applications that are using Deep Learning (DL) are
constantly expanding both in industrial and academic communities since they
are achieving state-of-the-art performance in complex tasks, such as image clas-
sification and time-series forecasting [17]. Despite the fact that DL can effectively
tackle such demanding tasks, its application is often restricted because of its high
computational cost. High-end hardware accelerators are required to achieve fast
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computational operations, such as matrix multiplication that occupies a signifi-
cant fraction of operations in DL. This demanding nature of DL has fueled the
research on low energy and ultra-fast hardware accelerators. Initially, Graphics
Processing Units (GPUs) have been used to serve the high computational cost of
the training and inference. Nowadays, energy consumption is an increasingly rel-
evant issue [42] and more advanced technologies, such as Tensor Processing Units
(TPUs) [13] and novel neuromorphic hardware architectures [11], are applied,
achieving even higher frequency rates with lower power consumption.

Neuromorpic photonics is an upcoming and promising technology that has
been increasingly gaining more attention in the academic communities since
it is able to propagate optical signals in very high frequencies with extremely
lower power consumption, employing them to provide the neuron’s function-
ality [1, 3, 37]. To achieve this, there is a great variety of proposed hardware
architectures that use only optical [8,41] and/or conjunctions of electro-optical
hardware devices [19]. However, there are limitations that restrict the applica-
tion of neuromorphic photonics in DL due to their unique nature. Although
photonic hardware has great advantages in the development of materials and
waveguide technologies [6], managing very fast analog processing and vector-
matrix operations with ultra low energy and power consumption [41] in reference
to its electronic counterparts, such implementations include analog-to-digital and
digital-to-analog conversions significantly degrade bit-resolution [29,40]. Further-
more, most of the photonic architectures currently available face difficulties in
deploying traditional activation functions that are typically used in DL, such as
ReLU [9]. Instead, PNNs are usually implied on sinusoidal [34] and/or sigmoidal
activations [23]. Therefore, training ANNs that are oriented to neuromorphic
photonics should consider both the photonic activation function [1,25], and take
into account the corruptions that exist due to the use of DACs and ADCs.

Typically, ADCs can be simulated through a quantization process that con-
verts a continuous signal to a discrete one by mapping its continuous set to a
finite set of discrete values [35]. This can be achieved by rounding and trun-
cating the values of the input signal. Despite the fact that quantization tech-
niques are widely studied by the DL community [12,16,18], they typically target
large convolutional neural networks (CNNs) containing a great amount of sur-
plus parameters with a minor contribution to the overall performance of the
model [5, 44]. These large architectures are easily compressed, in contrast to
smaller networks, such those currently developed for neuromorphic photonics,
in which every single parameter has a great contribution on the final output of
the model [12]. Furthermore, existing works mainly target dynamic quantization
methods, which require extra parameters during inference, or focus on partially
quantized models that ignore input and bias [10, 12]. These limitations, which
are further exaggerated when high-slope photonic activations are used, dictate
employing different training paradigms that take into account the actual physical
implementation [22].

Indeed, neuromorphic photonics impose new challenges on DL models quan-
tization, requiring the appropriately adaption of the existing methodologies to
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the unique limitations of photonic substrates, e.g., using smaller models. Further-
more, the quantization scheme applied in neuromorphics is a very simple uniform
quantization because it depends on the DAC/ADC modules that quantize the
signals equally and symmetrically [29,40]. This differs from the approaches tra-
ditionally used in trainable quantization schemes for DL models [32]. Finally,
being able to operate on low-precision networks during the deployment can fur-
ther improve the potential use of analog computing by lowering even more the
energy consumption of the developed accelerators [28,39].

This work focuses on training PNNs while taking into account the quantiza-
tion that occurs during the deployment, employing photonic activation functions.
As has been shown, considering actual hardware limitations and corruptions dur-
ing training can significantly improve the performance of the model during the
deployment phase [26, 27, 33]. To this end, we propose an activation-agnostic,
quantization-aware training method oriented for PNNs that enables us to effec-
tively train models in lower precision without significant performance degrada-
tion. The proposed quantization-aware training method considers the input and
model parameter variances during training and quantizes them accordingly. We
evaluate the proposed method on two different photonic architectures used on
two traditional image classification tasks applying multi layer perceptron (MLP)
and CNNs, respectively, as well as on a challenging time-series forecasting task
that involves high frequency financial time series using a state-of-the-art recur-
rent photonic architecture.

The rest of this paper is structured as follows. Section 2 provides the nec-
essary background on photonic DL, while the proposed method is introduced
and described in Section 3. Finally, the experimental evaluation is provided in
Section 4, while the conclusion is drawn in Section 5

2 Background

Similarly to the software implemented ANNs, photonic ones are based on per-
ceptron with the ultimate goal of approximating a function f∗. More precisely,
the input signal of the photonic ANN is denoted as x ∈ RM , where M repre-
sents the number of features. Each sample in the train data set is labeled with
a vector t = 1n ∈ RN where the n-th element equals to 1 and the other ele-
ments are 0 if it is a classification task (N denotes the number of classes) or a
continuous vector t ∈ RN if it is a regression task (N denotes the number of
regression targets). MLPs approximate f∗ by using more than one layer, i.e.,
fn(...(f2(f1(x;θ1)θ2; )θn) = zn and learn the parameters θi where 0 ≤ i ≤ n
with θi consisting of the weights wi ∈ RNi×Mi and biases bi ∈ RNi . Subse-
quently, each layer’s output is denoted as zi = fi(yi−1) = wiyi−1 + bi. The
output of the linear part of a neuron is fed to a non-linear function g(·), named
activation function, to form the final output of the layer, yi = g(zi)

The training of an ANN is achieved by updating its parameters, using the
backpropagation algorithm [14], aiming to minimize a loss function J(y, t), where
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t represents the training labels and y the output of the network. Cross-entropy
loss is often used in multi-class classification cases J(y, t) = −

∑N
c=1 tc log yc.

Except for the feed-forward ANNs, in this paper we also employ a simple-
to-apply recurrent neuromorphic photonic architecture. The applied recurrent
architecture is benefited from the existing photonic feed-forward implementa-
tions [24,38] while using a feedback loop. Following the above notation and the
fact that the recurrent architectures accept sequential data as input, let x be a
multidimensional time series, while let xt ∈ RM denote M observations fed to
the input at the t-th time-step. Then, the input signal is weighted by the i-th
neuron using the input weights w

(in)
i ∈ RM . Furthermore, the recurrent feed-

back signal, denoted by y
(r)
t−1 ∈ RNr , which corresponds to the output of the Nr

recurrent neurons at the previous time-step, is also weighted by the recurrent
weights w

(r)
i ∈ RNr . The final weighted output of the i-th recurrent neuron is

calculated as u
(r)
ti = w

(in)
i

T
xt +w

(r)
i

T
y
(r)
t−1. Note that we omitted the bias term

to simplify the employed notation. Then, this weighted output is fed to the em-
ployed photonic non-linearity f(·) to acquire the final activation of the neuron
as y

(r)
ti = f(u

(r)
ti ).

In this case of study two photonic activation functions are used. First, the
photonic sigmoid activation function is defined as [24]:

g(z) = A2 +
A1 −A2

1 + e(z−z0)/d
(1)

in which the parameters A1 = 0.060, A2 = 1.005, z0 = 0.154 and d = 0.033
are tuned to fit the experimental observations as implemented on real hardware
devices [24].

Also, a photonic sinusoiudal activation function is applied on the experi-
mental evaluations. The photonic layout corresponds to the employing a Mach-
Zender Modulator device (MZM) [36] that converts the data into an optical
signal along with a photodiode [2]. The formula of this photonic activation
function is the following:

g(z) =


0, if z < 0.

sin π2

2 z, if 0 < z < 1.
1, if z > 1.

(2)

It is worth noting that because of the narrow range of the input domain these
photonic activations have, training is even more difficult, since the networks tend
to be easily saturated, leading to slower convergence or even halting the training.

3 Proposed Method

In this work, we propose a quantization-aware training framework that takes into
account the quantization error arisen from DACs and ADCs modules in PNNs.
In this way, we exploit the intrinsic ability of ANNs to resist to known noise
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sources when they are first trained to withstand them [25, 33]. In this way, the
training procedure is adjusted on lower-precision signals, and consequently the
quantization error is considered at the loss function and minimized through the
optimization process. As a result, the networks trained in a quantization-aware
fashion can significantly improve the accuracy during the inference process.

Under the proposed quantization-aware training framework, which is in-
spired and extends the quantization scheme in [12], every signal that is involved
in the response of the i-th layer is first quantized in a specific floating range
[p

(i)
min, . . . , p

(i)
max]. More specifically, it simulates the quantization process during

the forward pass, which means that the input, model’s parameters and activation
values are stored as floating point numbers enabling us to perform backpropaga-
tion as usual. However, during the forward-pass quantization error ϵ is injected
by deploying the rounding of quantization arithmetically in floating point. More
precisely, the inputs and the model’s parameters are quantized before forward-
pass is applied to the layer. In turn, the linear output of the layer is quantized
before it is fed to the photonic activation function. As a result, quantization
divides the signal by the number of quantization levels in a range depending on
the specific bit resolution.

First, every signal involved p(i) is converted to a bit representation by apply-
ing the function Q : R → N formulated as following:

p(i)q = Q(p(i), s(i)p , ζ(i)p ) = clip

{⌊
p(i)

s
(i)
p

+ ζ(i)p

⌉
, qmin, qmax

}
∈ N

where p(i) ∈ R, p
(i)
q ∈ [0 . . . , 2B − 1] and B denotes the bit resolution of the

signal. Variables s
(i)
p ∈ R+ and ζ

(i)
p ∈ N define the quantization parameters of

the quantization function Q named scale and zero-point respectively. The scale
value is typically represented in the software as a floating-point number and is
calculated as follows:

s(i)p =
p
(i)
max − p

(i)
min

qmax − qmin
∈ R+ (3)

where qmin ∈ N+ and qmax ∈ N+ denote the range of an B-bit resolution (0 and
2B −1 respectively) while p

(i)
max ∈ R and p

(i)
min ∈ R represents the working range,

i.e., maximum and minimum, of a signal. In turn, the zero point is calculated:

ζ(i)p = clip

{⌊
qmin − p

(i)
min

s
(i)
p

⌉
, qmin, qmax

}
∈ N (4)

In contrast to [12], we convert p
(i)
q ∈ [0 . . . , 2B − 1] to discrete floating arith-

metics p
(i)
q ∈ [p

(i)
min, . . . , p

(i)
min] using a dequantization function D : N → R for-

mulated as following:

p
(i)
f = D(p(i)q , s(i)p , ζ(i)p ) = s(i)p (p(i)q − ζ(i)p ) ∈ R (5)
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Following the above notation the linear response of i-th layer is given by:

z
(i)
f = Quant(w

(i)
f · y(i−1)

f + b
(i)
f ) ∈ RNi (6)

where Quant(x) denotes process of quantization followed by dequantization of
a vector or matrix x ∈ RMi , while w

(i)
f ∈ [w

(i)
min, . . . , w

(i)
max]Ni×Mi and b

(i)
f ∈

[b
(i)
min, . . . , b

(i)
max]Ni denote the quantized weights and biases of i-th layer. Note

that the Quant(x) function is applied in an element-wise fashion.
Finally, the output z(i)

f passes through the photonic activation function, g(·)
of the neuron y

(i)
f = Quant(g(z

(i)
f )). In this way, all signals involved in the layer’s

output are distributed in a uniform floating range between p
(i)
min and p

(i)
max and

they can be represented using B bits. Thus, the quantization error is propa-
gated through the network as a noise signal that is taken into account during
the training, and the network learns to be aware of it during the deployment.
The proposed method is presented for feedforward networks, but without loss of
generality it can be applied to RNN architectures as well. Consequently, we can
represent the forward pass as a procedure that involves a quantization error that
is introduced in the inputs, weights, and activations. We should note that dur-
ing the training, the quantization effect is simulated while the backpropagation
happens as usual, meaning that the original parameters are updated according
to the propagated loss.

What significantly affects the amount of quantization error, both in training
and inference, is the selected working range, i.e., minimum (pmin) and maximum
(pmax) values, of a signal on which the scale of uniform buckets depends. To this
end, we propose computing the exponential moving average (EMA) for pmin and
pmax. We use EMA to eliminate outliers in vectors and matrices and smoothen
the process of quantization during the training. In this way, the model becomes
more robust to outlier values, especially at the beginning of the training process.

Since the distribution of every signal is transformed during the training, the
preferable boundaries of a signal are calculated incrementally at every timestep
t as following:

p̃
(i)
max,t = (β/t)p

(i)
max,t + (1− (β/t))p̃

(i)
max,t−1 (7)

p̃
(i)
min,t = (β/t)p

(i)
min,t + (1− (β/t))p̃

(i)
min,t−1 (8)

where t denotes the training iteration, β is the weighting parameter of the EMA
and the update is applied for t > ⌈b⌉. Note that we calculate the min and max
values per vector and/or matrix. Therefore, we use the same min and max for
the activations of the same layer, but different ones for different layers.

4 Experimental Evaluation

We evaluate the proposed method on two traditional image classification tasks,
more specifically on MNIST [4] and CIFAR10 [15], using MLPs and CNNs re-
spectively. Additionally, we employed RNN, to sufficiently cover all possible sce-
narios, on a challenging forecasting task using high frequency time series limit
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order book data (FI-2020) [31]. Photonic sigmoid and sinusoidal activation func-
tions are employed in the aforementioned architectures, as given by equations 1
and 2 respectively. We evaluate the performance of the proposed method on
different bit resolutions. Also, we compared the proposed method with a post
training quantization approach in which the quantization is ignored during the
training procedure and is applied during the inference. On the baseline approach,
the pmin and pmax values for each parameter are calculated using the minimum
and maximum values of each parameter vector or matrix. This corresponds to
the case where the models are deployed directly in photonic hardware, as is cur-
rently done in most photonic DL approaches [7, 8, 21]. In the proposed method,
the parameter β is set to 2.

4.1 Image classification

We report the average accuracy and the corresponding variance of the evalua-
tion accuracy over 10 training runs in Table 1 and 2 for MNIST and CIFAR10
datasets respectively. More precisely, MNIST [4] dataset consists of handwritten
digits, including 60,000 train samples and 10,000 test samples. The digits have
been size-normalized, centered in a fixed size, and flattened to one dimension,
leading to 784 features per sample. The input flattened images are fed to the
first fully connected layer which consists of 10 neurons, then to the second fully
connected layer which consists of 20 neurons, and finally to the output layer
which consists of 10 neurons. The models are optimized for 100 epochs using the
RMSProp optimizer [43] with a learning rate equal to 0.0001. The cross-entropy
loss was used as the objective function, while mini-batches of 256 samples were
used.

Table 1. Evaluating the proposed method on MNIST. Classification accuracy (%) is
reported.

Photonic Sinusoidal Photonic Sigmoid
Bits Post training Proposed Post training Proposed

8 90.12± 1.52 91.21± 0.49 91.02± 0.81 91.17± 0.33
6 86.93± 1.47 91.04± 0.51 87.01± 0.12 91.02± 0.29
4 09.95± 0.00 90.26± 0.77 09.34± 0.00 90.20± 0.39
2 09.97± 0.00 67.63± 2.28 09.98± 0.00 61.00± 1.95

As demonstrated in Table 1, the performance of the post training quantiza-
tion method (columns 2 and 4) is collapsed when the bit resolution is lowered,
especially in 2 and 4 bits. The proposed method, which takes into account the
quantization during the training phase, can significantly improve the perfor-
mance in low bit resolutions and resist the corruption occurring in post training
quantization. This can be also attributed to the fact that the proposed method
is taking into account the bounds of each signal incrementally, since it computes
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the EMA of the minimum and maximum value of each involved parameter. In
this way, it can eliminate outliers that can lead to a wide range of buckets with
barely any values. The proposed method (column 3 and 5) exceeds in terms of
performance the post training method in all cases irrespective of the model’s
resolution and/or the applied photonic activation function.

The CIFAR10 dataset includes 50,000 images in the training set and 10,000
in the evaluation set with 32× 32 color image samples containing one of the 10
object classes. The applied CNN consists of four convolutional layers followed
by two linear layers. In more detail, the first two convolutional layers consist of
3× 3 kernel size with 32 and 64 filters, followed by a 2× 2 average pooling layer.
Then, the other 2 convolutional layers are applied with 128 and 256 filters of size
3×3 followed by an 2×2 average pooling. Finally, the features that are extracted
are flattened and fed to a linear layer that consists of 512 neurons followed by
the final classification layer. The networks are optimized for 250 epochs using
RMSProp optimizer [43] using mini-batches of 256 samples with a learning rate
equal to 0.0001.

Table 2. Evaluating the proposed method on CIFAR10. Classification accuracy (%)
is reported.

Photonic Sinusoidal Photonic Sigmoid

Bits Post training Proposed Post training Proposed

8 15.22± 1.15 67.64 ± 1.24 16.39± 1.15 66.23 ± 1.23
6 15.10± 1.81 66.56 ± 1.38 15.76± 0.73 66.50 ± 1.61
4 16.62± 2.44 29.48 ± 10.43 16.38± 0.25 65.25 ± 1.96

In contrast to the MNIST case, in this experimental evaluation the perfor-
mance of the baseline approach (columns 2 and 4) collapses even when 8-bit
resolution is used. On the other hand, the proposed method (columns 3 and
6), similar to the fully connected case, can significantly resist to such collapse,
since it outperforms the baseline approach in all cases. At 4-bit resolution the
proposed method cannot fully recover the loss in the accuracy (for the photonic
sinusoidal case), yet it can still lead to improvements. Therefore, we can safely
draw the conclusion that the proposed can be generalized to CNNs, since it im-
proves the performance of models during the inference for all the experiments
conducted.

4.2 Forecasting financial time series analysis

Finally, the dataset that is used to evaluate the photonic recurrent architecture
is a high frequency financial time series limit order book dataset (FI-2020) [31]
that consists of more than 4,000,000 limit orders which come from 5 Finnish
companies. The data processing scheme and evaluation procedure are described
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extensively in [30]. For the following experiments, splits 1 to 5 were used. The
task of the forecast is to predict the movement of the future mid-price after the
next 10 time steps which can go down, up or remain stationary.

The DL network that is used for the experiment consists of a recurrent pho-
tonic layer with 32 neurons, as described in Section 2. The output of the recurrent
layer is fed to two fully-connected layers with the first fully connected layer con-
sisting of 512 neurons and the second of 3 neurons. The length of the time series
that is fed to the model is 10, which is the current and the past 9 timesteps. The
model is optimized for 20 epochs with the RMSprop optimizer, and the learning
rate is set to 10−4.

Table 3. Evaluating the proposed method on FI2020. Cohen’s κ metric is reported.

Photonic Sinusoidal Photonic Sigmoid

Bits Post training Proposed Post training Proposed

8 0.0502± 0.0218 0.1189 ± 0.0105 0.0653± 0.0081 0.1262 ± 0.0072
6 0.0647± 0.0015 0.1170 ± 0.0115 0.0656± 0.0061 0.1242 ± 0.0132
4 0.0645± 0.0057 0.1091 ± 0.0210 0.0648± 0.0062 0.1232 ± 0.0517
2 0.0370± 0.0069 0.0601 ± 0.0031 0.0377± 0.0126 0.0918 ± 0.0033

The evaluation results are reported in Table 3. More precisely, we report
the mean value of 5 splits using Cohen’s κ metric [20] to evaluate the perfor-
mance of the models since the dataset is extremely imbalanced. We observe that
the benefits of the proposed method (columns 3 and 6) are crucial for the per-
formance of the models during the inference phase since the post quantization
training method (columns 2 and 4) is unable to sustain a reasonable performance.
Indeed, the proposed method can significantly improve the inference accuracy
irrespective of the photonic activation that is employed, highlighting once again
its activation agnostic scope.

5 Conclusion

Neuromorphic photonics are an upcoming technology promising to overcome
limitations that have become relevant over the recent years providing ultra-
high speed and low energy consumption accelerators. At the same time, their
application is hindered since it introduces new challenges on the training and de-
ployment of DL, such as easily saturated activation functions and susceptible to
different noise source ANNs, e.g., due to quantization. In this paper, we propose
a novel activation-agnostic quantization-aware training method that is capable
of compensating for quantization noise that arises from ADCs/DACs. As exper-
imentally evaluated, the proposed method is capable of significantly improving
the performance of low-bit resolution PNNs by considering quantization during
the training. The proposed method builds a robust representation enabling us
to decrease memory requirements and computational cost by lowering the bit
resolution without significant performance degradation. The proposed method is
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evaluated on both image classification and time-series analysis tasks, employing
a wide range of photonic architectures, outperforming the evaluated baselines.
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