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Abstract—Deep Learning (DL) models that support adaptive
computational graphs allow for easily adapting the computations
to the available resources by selecting the most appropriate
computational path. However, such models are typically used
in classification settings, e.g., using early exits, despite that DL
models often aim at extracting representations, e.g., for face
recognition. In this work, we provide a metric-learning oriented
early exit methodology for DL models. As we demonstrate,
employing early exits in metric learning scenarios pose unique
challenges compared to existing methodologies for classification-
oriented early exits. To this end, we employ the Bag-of-Features
model to efficiently extract compact representations from any
layer of a DL model that is then combined with an efficient linear
regressor to match the final representation of the model (without
having to feedforward the whole computational graph). The
proposed method is agile and can be directly used with any pre-
trained DL model, while it is end-to-end differentiable, allowing
for further fine-tuning the models towards having multiple early
exits. The effectiveness of the proposed method is demonstrated
using five face verification/recognition datasets.

Index Terms—Adaptive Inference, Early Exits, Deep Metric
Learning, Lightweight Deep Learning

I. INTRODUCTION

A number of impressive applications, ranging from accu-
rate robotics perception [1] to precise disease prognosis and
diagnosis [2], are enabled by powerful Deep Learning (DL)
models [3]. Indeed, DL models are becoming increasingly
powerful, following the continuous improvements in dedicated
hardware accelerators, such as Graphics Processing Units
(GPUs) and Tensor Processing Units (TPUs) [4], which al-
lowed for training and deploying deeper and more complicated
models. However, in many applications, such as robotics [1]
and Internet-of-Things (IoT) [5], we are often still limited to
using less powerful hardware, due to a number of limitations,
ranging from energy and power constraints to constrained
physical form factors. As a result, numerous methods have
been proposed to allow for developing more lightweight DL
models that will be deployed in such devices, while meeting
critical application-specific requirements, such as low latency
and real-time operation.

These methods include quantization [6], for reducing the
number of bits spent for each of the parameters of the model,
pruning methods [7], that discard parts of the model that are
not critical for its operation, models that are lightweight by de-
sign [8], [9], as well as knowledge distillation approaches [10],

[11], which aim to transfer the knolwedge from a larger
and more complex neural network into a smaller and faster
one. These approaches led to more lightweight models that
could operate faster in many embedded and mobile devices.
However, most of these methods are not capable of adapting
to varying computational loads. In other words, the inference
time is constant regardless the environmental conditions, e.g.,
the difficulty of each sample, the load of the system, etc.

This is a critical limiting factor in a number of embedded
applications, where the load dynamically varies according
to the environmental conditions. For example, for a face
recognition application the time needed for face recognition
depends on the number of faces that appear in a given frame.
As a result, even through a model might operate in real time
for a specific number of faces, e.g., 2-3 faces, this might
not be the case when a larger number of people appears in
a given frame. Therefore, in such cases, we need models
that can effectively adapt to the current conditions, providing
faster (and possibly less accurate) predictions when the load
is higher in order to satisfy the processing time limitations
of a given application. In this way, the models can provide
accurate answers, exploiting all the available processing time,
while still meeting the requirements of each application when
the load is higher.

These limitations can be addressed by using models that
support adaptive computational graphs, such as [12]–[14].
These approaches work by altering the number of computa-
tions in order to keep the load within certain limits. This is
usually achieved by using multiple paths over the computation
graph of the model. Among the most straightforward ways
to achieve this is by using early exits [12]–[14]. By placing
such early classification layers at various intermediate layers
of the network we can early stop the computation whenever it
is deemed appropriate (e.g., when the computational budget
is spent or when the network is already confident enough
regarding the provided prediction), obtaining an estimation for
the representation that would be extracted from the final output
layer of the network.

Even though early exits provided a very powerful tool to
address the aforementioned limitations, its use is currently
limited to classification settings [12]–[14]. However, in many
cases, deep learning models aim at extracting representations
(metric learning) [15], instead of directly predicting the class



to which the input sample belongs to. Perhaps the most
well known example of such metric learning task is face
recognition [16] and content-based information retrieval [17].
To the best of our knowledge there has been no attempt to
use early exits in such scenarios, such as metric learning-
based face verification. Even though it could be argued that
using early exits in such scenarios could be deemed redundant,
since we can directly extract a representation from any layer
of a DL model without any modification, we demonstrate that
this naive approach has significant limitations and that we can
achieve higher accuracy by employing appropriately designed
and trained early exit layers.

The main contribution of this work is to provide a met-
ric learning-oriented early exit methodology for DL models.
As we experimentally demonstrate, employing early exits in
metric learning scenarios pose unique challenges compared to
existing methodologies for classification-oriented early exits.
To this end, in this work we leverage the Bag-of-Features
model to efficiently extract compact representations from any
layer of a neural network. Then, an additional small linear
regressor is used to regress the final output of the model
at selected points of its computational graph. In this way, a
representation that can be used in place of the final repre-
sentation can be readily extracted from an early exit. This
provides significant advantages over existing metric learning
approaches, which would require keeping a separate database
for the representations extracted from each exit layer, increas-
ing the space required for using any additional layer as an
early exit and reducing the accuracy of the resulting models,
as we demonstrate in Section III. The proposed method is agile
and can be directly used with any pre-trained metric learning
DL model, while it is end-to-end differentiable, allowing
for further fine-tuning the models towards having multiple
early exits. The effectiveness of the proposed method is
demonstrated using five face verification/recognition datasets,
including DL models trained on the large-scale MS-Celeb-1M
dataset [18] and evaluated using a wide range of datasets, as
well as experiments conducted on two embedded platforms
typically used in robotics applications.

The rest of the paper is structured as follows. The proposed
method is introduced in Section II. Then, Section III provides
the experimental setup and experimental evaluation, while
Section IV concludes this paper.

II. PROPOSED METHOD

In this Section we present the proposed method. First, we
introduce the used notation and then we present the proposed
early exit strategy. Let fW(x, i) denote the response of the i-
th layer of a neural network that is composed of a total of m
layers. We used the notation W to refer to the trainable param-
eters of the network, while x denotes the input to the network.
In this work we focus on convolutional neural networks that
handle images as input, i.e., x ∈ RW×H×C , where W is the
width, H is the height, and C is the number of channels of
the image. However, this is without loss of generality, since
the proposed method can be directly employed for any other

type of DL model. To simplify the used notation, we denote
by y(i) = fW(x, i) ∈ RWi×Hi×Ci the output of the i-th
layer, where Wi, Hi and Ci refer to the width, height and
number of channels of the extracted feature map. The notation
y = fW(x,m) ∈ RM is used to refer the final output of the
network, where M is the dimensionality of the output layer.
Finally, we use the notation X = {x1,x2, . . . ,xN} to refer to
a training set of N images that will be used for training the
early exits.

For the rest of this Section, we assume that the network
has already been trained to perform a specific metric learning
task [16], [19], and we will focus on training the early
exits on top of the representations y(i) extracted at specific
points of its computational graph. Early exits typically employ
an additional estimator, fitted on top of the representation
extracted at various points of the computation graph of the
model, to predict the final output of the model. Therefore, we
can use an estimator g(i)Wi

(·) at the i-th layer of the network
as:

g
(i)
Wi

(
y(i)
)
= g

(i)
Wi

(fW(x, i)) ∈ RM . (1)

The notation Wi is used to refer to the parameters each early
exit. Classification-based early exits are trained to directly
solve the original classification task of the network [12]–[14].
However, for metric-learning oriented network this approach
cannot be employed, since even if we use the original loss used
for training the network, e.g., the contrastive loss [19], we will
not learn representations in the same space as the one formed
by the last layer of the network. As a result, the representations
extracted by the early exits would not be useful for performing
queries in a database that consists of representations extracted
from the final layer of the network.

To overcome this limitation, in this work we proposed
using a distillation inspired approach [10], i.e., to train the
early exits in order to mimic the output of each layer. Per-
haps the most straightforward approach to ensure that the
features extracted by the early exits g

(i)
Wi

(·) will reside in
the same space as the final representation of the network y
is to minimize the quadratic divergence between these two
representations. Therefore, early exit estimators are trained in
order to minimize the following loss:

Li =
1

N

N∑
j=1

||yj − g(i)Wi
(y

(i)
j )||22, (2)

where i denotes the early exit that we are training, || · ||2
denotes the l2 norm of a vector and the notation yj is used to
refer to the representation extracted when the j-th sample is
fed into the network, i.e., yj = fW(xj ,m) ∈ RNC .

Usually, early exits employ a feature aggregation approach
to reduce the dimensionality of the extracted feature maps,
e.g., Global Average Pooling, that is then followed by a
fully connected layer. However, naive feature aggregation
approaches, such as global average/max pooling, have been
shown to discard useful information [20]. Therefore, in this
work we employ a Bag-of-Features (BoF)-based aggregation



layer in order to reduce the dimensionality of the extracted
feature maps and extract a compact summary representation
that can be further adapted towards the task at hand [21].

BoF-based pooling works as follows. First, we quantize each
feature vector extracted from a feature map using a set of NK

codewords. In this work, we use the notation vij to denote
each codeword, where i is the layer to which the codeword
belongs to (a separate codebook is used for each layer) and
j refers to a specific codeword (out of NK possible ones). In
this way, we can then extract a membership vector for each
feature vector that belongs to the i-th exit as:

[uikl]j =
K([y(i)]kl,vij)∑NK

m=1K([y(i)]kl,vim)
∈ [0, 1]. (3)

The notation (k, l) is used to refer to the location of the
feature map from which the feature vector is extracted, while
K(·) denotes the kernel used for measuring the similarity
between codewords and feature vectors. In this work, we use
a Gaussian-based kernel to this end:

K(x,vij) = exp(−||x− vij ||2

2σ2
i

), (4)

where σi is a trainable scaling factor that scales the distances
between feature vectors and codewords to the appropriate
range. For non-trainable BoF models, σi is typically set to
the average distance between the feature vectors and the
codewords.

After extracting the membership vectors uikl we can di-
rectly extract a compact histogram representation for each exit
as:

s(i) =
1

WiHi

Wi∑
k=1

Hi∑
l=1

uikl ∈ RNK , (5)

This histogram representation provides a summary of the
concepts that appear in the corresponding features. By appro-
priately tuning the codewords we can focus the representation
on different concepts. For example, using k-means to learn the
codebook leads to a generic representation that can be used
for any task, while finetuning the whole layer using gradient
descent allows for learning task-specific codewords (provided
that the BoF layer is part of a network trained for a specific
task). Finally, this histogram representation is fed into a linear
layer that projects the histogram into the desired space, i.e.,
g
(i)
Wi

(y(i)) = s(i)(y(i))Wl
i, where Wl

i ∈ RNK×M . In the case
of metric-learning networks this would be the space formed
by the output layer of the network. Then, early exits can be
trivially trained using gradient descent, minimizing the loss
provided in (2).

III. EXPERIMENTAL EVALUATION

The proposed method was evaluated using the MS-Celeb-
1M [18], Labeled Faces in the Wild (LFW) [22], [23], Cross
Pose LFW (CPLFW) [24], Cross Age LFW (CALFW) [25],
and VGGFace2 [26] datasets. More specifically, we follow a
standard face verification setup [27], where the models are
trained on the MS-Celeb-1M dataset and evaluated on the

TABLE I
NUMBER OF ADDITIONAL PARAMETERS REQUIRED FOR EACH METHOD

Method Exit 1 Exit 2 Exit 3

Raw* 1.2-1.4M 2.4-2.7M 2.4-2.7M
LR 66k 131k 131k
BoF 327k 393k 393k
Proposed 327k 393k 393k

*For the raw method we assume that we employ a database that contains
3,000 feature vectors, which corresponds to the evaluation setup used in this
paper.

remaining four datasets, i.e., LFW, CPLFW, CALFW and
VGGFace2. All images used for the conduncted experiments
were resized to 112×112 pixels. For the evaluation procedure
we randomly sample 6,000 image pairs that either correspond
to face images of the same person or to face images of different
persons (equally distributed among the two cases). A face
pair is considered to belong to the same person when the
distance between the corresponding embeddings is lower than
a certain threshold. This threshold is selected to maximize the
face verification accuracy on a validation dataset. As a result,
we report the average 10-fold cross validation accuracy for
all the conducted experiments, i.e., the threshold is selected
according to the validation split and the accuracy is reported on
the corresponding test set. For all the conducted experiments
we used a ResNet-50 network [28], where inverted residual
blocks were employed for improving its efficiency [29]. The
early exits were placed after the 1st, 2nd and 3nd residual
block. The dimensionality of the feature vectors extracted from
each of these blocks is 128, 256 and 256 respectively, while
the dimensionality of the final representation of the network
is 512.

Three different methods were evaluated along with the
proposed one. For the first one we directly extracted the
feature vectors from each early exit, we employed global
average pooling and then we queried the database using
these representations. This approach is called “raw” in the
rest of this paper, since it relies on directly using the raw
feature vectors, as they are extracted from the network. Even
though the dimensionality of these feature vectors is lower, this
method requires keeping a separate database with the feature
vectors extracted from each additional early exit, significantly
increasing the storage requirements as shown in Table I. Next,
we evaluated a linear regressor (denoted by “LR”) that was
trained to directly regress the output representation of the
network based on the (average) pooled representation extracted
from each early exit. The same approach was also repeated us-
ing the Bag-of-Feature model, where we used 512 codewords
for building the codebook (using the k-means algorithms and
the feature vectors extracted from each early exit for building
the codebook). This method is denoted as “BoF”. Note that
both the LR and BoF methods can be regarded as a simplified
(ablated) version of the proposed one, since, to the best of
our knowledge, neither has been proposed in the literature for



constructing early exits. Despite this, they consist a strong
baseline, as we demonstrate later in this Section.

Finally, we evaluated the proposed method using again
NK = 512 codewords (in order to be directly comparable
with the BoF baseline). The number of training iterations was
set to 2,000 with a learning rate of 0.001 for the parameters
of the BoF model, while the linear regressor was fine-tuned
using a learning rate of 0.0001. The Adam algorithm with its
default parameters was used for the optimization [30], while
the batch size was set to 32. After training the BoF-based
layers, the linear regressor was fitted again using the closed
form solution to ensure a fair comparison with the LR method
(16,000 training samples were used for fitting the regressor).
A comparison between the number of parameters required for
adding the early exits to the base model are summarized in
Table I. All the methods (LR, BoF, Proposed) significantly
reduce the number of required parameters over the naive raw
baseline. Using the BoF layer increases, to a small extent, the
number of required parameters, but as we demonstrate later,
this is also accompanied by a corresponding increase in the
face verification accuracy. Furthermore, in all cases (except
from the raw baseline) the number of parameters is kept
within reasonable limits. It is also worth noting that for the
BoF/Proposed method the number of the added parameters can
be further controlled by decreasing the number of codewords
NK .

The experimental evaluation is provided in Table II. The
four evaluated methods are compared on four different datasets
using the three different added early exits. In all the cases,
using a subsequent early exit increases the obtained verifi-
cation accuracy as expected. Furthermore, just using a lin-
ear regressor (LR) to regress the final representation of the
network leads to a significant increase over directly using
the raw representation. Indeed, in some cases (e.g., CALFW)
the accuracy increases by over 25%. Then, using the BoF
model further increases the performance, while employing
the proposed method leads to the overall best accuracy in
all the evaluated cases. It is worth noting that in some
cases, the verification performance is very close to the actual
performance of the final output of the network, as reported in
Table III.

To further verify that using the proposed method leads to
actual performance improvements we evaluated all the em-
ployed methods using two embedded platforms, the NVIDIA
Jetson TX-2 and the NVIDIA Jetson AGX. The obtained
results are summarized in Table IV. Indeed, using early exits
leads to a significant speedup , e.g., about 4× for the first
exit compared to the final output of the network. Using the
proposed method leads to a slight overhead (about 10%)
compared to the raw and LR methods. However, it still leads
to enormous performance improvements over the final output
of the network, while achieving higher verification accuracy,
as demonstrated before.

TABLE II
FACE VERIFICATION ACCURACY ON FOUR DIFFERENT DATASETS USING

THREE DIFFERENT EARLY EXITS. THE MEAN AND STANDARD DEVIATION
OF THE 10-FOLD CROSS-VALIDATION ACCURACY IS REPORTED.

Method Exit 1 Exit 2 Exit 3

Dataset: LFW

Raw 68.60± 2.25 82.33± 1.25 92.80± 1.57
LR 75.05± 2.00 88.98± 1.42 94.15± 0.69
BoF 79.93± 1.59 92.33± 1.22 92.58± 1.23

Proposed 80.98± 2.64 92.70± 1.28 96.58± 0.64

Dataset: CPLFW

Raw 52.75± 1.95 51.98± 1.74 63.83± 2.38
LR 66.80± 1.71 75.57± 2.04 83.02± 1.36
BoF 68.52± 1.79 79.98± 2.16 81.13± 1.05

Proposed 68.98± 1.18 80.05± 1.70 84.20± 1.56

Dataset: CALFW

Raw 55.00± 1.62 61.72± 1.50 68.10± 1.98
LR 70.28± 1.51 82.18± 1.89 87.35± 1.18
BoF 71.80± 1.18 84.55± 1.06 84.93± 1.51

Proposed 73.65± 1.82 84.78± 1.50 89.37± 1.37

Dataset: VGGFace2

Raw 56.88± 2.07 64.24± 1.12 78.88± 1.43
LR 67.10± 1.74 78.50± 1.85 84.16± 1.33
BoF 68.86± 1.84 81.56± 2.69 83.50± 1.55

Proposed 71.34± 2.04 82.32± 2.32 88.10± 1.43

TABLE III
FACE VERIFICATION ACCURACY ON FOUR DIFFERENT DATASETS USING

THE FINAL OUTPUT OF THE EMPLOYED NETWORK.

Dataset Accuracy

LFW 99.78± 0.22
CPLFW 92.05± 1.36
CALFW 95.78± 1.20
VGGFace2 94.98± 0.71

The mean and standard deviation of the 10-fold cross-validation accuracy is reported.

IV. CONCLUSIONS

In this work we proposed a metric learning-oriented early
exit methodology that can be effectively used with any DL
model. To this end, we employed the Bag-of-Features model
in order to extract compact representations from enormous
feature maps, that were then fed into lightweight linear re-
gressors trained to approximate the final representaiton of the
model. In this way, it is possible to estimate the final output
of a large and complex DL model at various points of its
computational graph. As we experimentally demonstrated, this
approach allows for effectively adapting the computations to
the available resources. At the same time, the proposed method
works significantly better than naive approaches that were used
until now, such as directly using the representation extracted
from a layer and building separate databases for each layer.
Furthermore, the proposed method is easy to use and agile,
since it can be readily combined with any DL model. At the
same time, it can be used to train the models in an end-to-end
fashion, in order to better adapt to the task at hand, since it



TABLE IV
SPEED (FPS) COMPARISON BETWEEN DIFFERENT METHODS AND EXITS

Method Exit 1 Exit 2 Exit 3

Jetson TX-2 (≈ 0.8 FP32 TFLOPS)

Default 5.6
Raw 23.4 13.2 9.6
LR 23.1 13.2 9.6

BoF/Proposed 20.8 12.9 9.5

Jetson AGX (≈ 1.4 FP32 TFLOPS)

Default 8.6
Raw 41.2 24.5 18.7
LR 40.8 24.3 18.7

BoF/Proposed 38.1 23.9 18.4

Frames Per Second (FPS) are reported. FPS are measured using batches of 4 input
images, to ensure more consistent measurements. The average of 100 runs is reported.

relies on a fully differentiable formulation.
In this way, the proposed method paves the way for building

more advanced early exit methodologies for representation
learning tasks. For example, the early exits at subsequent
layers can be trained to regress the residual error [20], instead
of the raw final representation. We expect that this will
allow for further increasing the performance of the method,
since each exit could be finetuned to just refine the previous
output. Furthermore, the models can be also used to adapt the
model to the difficulty of each sample, in a similar fashion
as in [31], allowing for skipping layers of the networks for
easier samples. This could allow for further increasing the
inference speed and reducing the energy requirements of the
models.
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