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ABSTRACT

Knowledge distillation enables us to transfer the knowledge
from a large and complex neural network into a smaller and
faster one. This allows for improving the accuracy of the
smaller network. However, directly transferring the knowl-
edge between enormous feature maps, as they are extracted
from convolutional layers, is not straightforward. In this
work, we propose an efficient mutual information-based ap-
proach for transferring the knowledge between feature maps
extracted from different networks. The proposed method
employs an efficient Neural Bag-of-Features formulation to
estimate the joint and marginal probabilities and then op-
timizes the whole pipeline in an end-to-end manner. The
effectiveness of the proposed method is demonstrated using
a lightweight, fully convolutional neural network architec-
ture, which aims toward high-resolution analysis and targets
photonic neural network accelerators.

Index Terms— Knowledge Distillation, Bag-of-Features,
Mutual Information, Convolutional Neural Networks

1. INTRODUCTION

Deep Learning (DL) led to a tremendous success in many dif-
ferent application areas [1]. However, DL models are usually
computationally intensive, requiring specialized and energy-
consuming hardware for inference. This has fueled the in-
terest in developing more lightweight architectures [2, 3],
methods for compressing existing architectures [4], as well
as methods for mitigating the possible loss in accuracy due
to employing lightweight architectures [5, 6], such as knowl-
edge distillation [5], which works by transferring the knowl-
edge encoded in a large and complex teacher model into a
lightweight student model.

Even though many knowledge distillation methods have
been proposed in the recent literature, most of them focus on
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transferring the knowledge either between vectors or matri-
ces extracted from the two models. For example, knowledge
distillation aims to “mimic” the soft probabilities extracted
by the teacher model, hint-based transfer employs auxiliary
dimensionality reduction layers to match the dimensional-
ity of the representations extracted from the networks [7],
while other methods, such as probabilistic knowledge trans-
fer (PKT) [8], attempt to mimic other qualities, such as the
similarities between samples, as they are encoded by the rep-
resentations extracted from various layers of the networks.
Even though the latter methods can handle vectors that have
different dimensionality, they cannot directly handle the mul-
tiple feature vectors, as typically extracted from the convo-
lutional layers of a neural network. To this end, they either
employ aggressive pooling strategies, that can lead to loss
of information, or flatten the feature maps into vectors with
enormous dimensionality, reducing the effectiveness of the
distillation process.

In this work, we aim to overcome these limitations by
fully avoiding using pooling and/or flattening operators when
transferring the knowledge between intermediate layers. It
is worth noting that this problem is especially challenging,
since the intermediate feature maps are not only typically
very large, but they also differ in the number of channels
used, since the student model is typically smaller than the
teacher. To this end, we propose to directly optimize the stu-
dent model to maximize the mutual information between the
distribution of the feature vectors of the student and teacher,
as they are extracted by a specific convolutional layer. How-
ever, measuring mutual information in high-dimensional
spaces is especially challenging and usually histogram bin-
ning methods, among others, are used to approximate the
mutual information in such spaces. To overcome this limita-
tion, we propose employing, after appropriately adjusting it,
a well-known model for extracting summary representations,
the Bag-of-Features (BoF) model [9, 10].

The main contribution of this work is a fully differentiable
and easy to optimize in a end-to-end manner formulation of
mutual information for feature distribution between different
networks. The proposed method employs a deep-learning ori-



ented variant of the BoF model [11] model to perform soft
quantization, which in turn enables us to estimate the joint
and marginal probabilities in a fully differentiable manner.
Furthermore, BoF enables us to have adaptive histogram bins
that are placed according to the density of the distribution and
the task at hand, going beyond simple rule-based binning ap-
proaches. Then, the classical mutual information definition
can be directly used as a criterion for optimizing the networks.
It is worth noting that the proposed method is tailored towards
a very specific part of knowledge distillation, i.e., transfer-
ring the knowledge between feature vectors extracted from
different convolutional layers. As a result, it is orthogonal
to most of the existing distillation methods and can be read-
ily combined with them. Experiments conducted on two im-
age datasets demonstrate the effectiveness of the proposed ap-
proach in the challenging domain of training photonic neural
networks, further closing the accuracy gap between photonic
and regular DL models.

The rest of the paper is structured as follows. In Section 2
we introduce and analytically derive the proposed method.
Then, in Section 3 we present the experimental setup and re-
sults. Finally, Section 4 concludes this paper.

2. PROPOSED METHOD

Let f(x) ∈ BNo denote a neural network, where x denotes
the input to the network and No the output dimensionality of
the network. In this work we focus on convolutional neural
networks where the input is a multidimensional tensor x ∈
RW×H×C , where W denotes the image width, H denotes
the image height and C is the number of channels. Also, we
assume that the networks are trained for classification tasks
and one-hot encoding is used for the output neurons, i.e., No

equals to the number of classes. Note that this is without loss
of generality since the proposed method does not require any
kind of ground-truth labels and it is applied directly on the
convolutional layers of the network. Furthermore, we also use
the notation yk = f(x, k) ∈ RWk×Hk×Ck to refer to the out-
put of the k-th convolutional layer of the network (for a given
input x), where Wk, Hk, and Ck refer to the width, height,
and number of channels of the corresponding feature map. If
the k-th layer is a fully connected one, then the same notation
can be used, but the dimensionality of the output would be
different, since the output is a vector instead of a feature map.
However, note that in this work we focus only on transferring
the knowledge between distributions defined by the feature
maps extracted from the network. So we can assume that the
output will be always a feature map when the notation f(·, k)
is used.

Furthermore, let fT (x) denote the teacher network from
which the knowledge is transferred to the student network de-
noted by fS(x). Similarly, we denote the output of the k-th
layer of the student and teacher networks as yT,k = fT (x, k)
and yS,k = fS(x, k) respectively. As we will discuss later,

the receptive fields should be the same between the k-th layers
of the teacher and student, i.e., the width Wk and height Hk

should be the same for both networks for a specific layer used
for knowledge transfer. However, there is no such limitation
on the number of channels for which the number can be dif-
ferent between the networks. Therefore, more convolutional
filters can be used for the teacher network and a smaller num-
ber of them can be employed for the more lightweight student
network. Also, let YT,k denote a random variable that refers
to the feature vector distribution extracted from the k-th layer
of the teacher network and YS,k to the feature vector distribu-
tion extracted from the k-th layer of the student network. We
refer to the i-th feature vector extracted from the teacher and
and student networks as yT,k,i ∈ RNT,k and yS,k,i ∈ RNS,k

respectively, where NT,k and NS,k is the number of convolu-
tional filters used by the teacher and student networks. Note
that the total number of feature vectors extracted from each
layer is the same, equal to Nk = Wk ·Hk, while the feature
vectors are paired, i.e., yT,k,i and yS,k,i are extracted from
the same spatial location of the feature maps.

In this work, we aim to maximize the mutual information
between the feature vector distributions of the k-th layer of
teacher and student networks, i.e., between YT,k and YS,k.
For the rest of this section we will assume that all derivations
refer to a specific layer k to simplify the used notation, unless
explicitly stated. Therefore, we aim to maximize the mutual
information defined as:

(1)I(YT ;YS |x) =
∫
YT

∫
YS

p(YT ,YS)(yT ,yS |x)·

log

(
p(YT ,YS)(yT ,yS |x)
pYT (yT |x)pYS (yS |x)

)
dyT dyS ,

where yT and yS belong to the feature spaces YT and YS

of the teacher and student respectively. Also, p(YT ,YS)(·)
refers to the joint probability of YT and YS , while the no-
tation pYT

(·) and pYS
(·) is used to refer to the corresponding

marginal probabilities. Note that we measure mutual informa-
tion per input sample x, i.e., all probabilities are conditioned
on x, since a different distribution is generated for each in-
put sample. In this work, we employ a histogram-based ap-
proach for dividing the feature spaces in an adaptive manner
and then treating this problem using discrete variables in or-
der to tackle the especially challenging problem of estimating
the aforementioned densities in high-dimensional spaces.

To this end, we employ the well known Bag-of-Features
model. The BoF model works by defining a number of bins
using prototype vectors called codewords. Then, each of the
feature vectors are quantized to each bin. In this work, we use
a soft binning approach [11]. More specifically, we quantize
the feature vectors extracted by the teacher as:

dT,i,j|x =
K(yT,i,vT,j)∑NK
l=1 K(yT,i,vT,l)

, (2)

where NK is the total number of codewords/histogram bins
used and K(·) is a kernel used to measure the similarity be-
tween the feature vector yT,i and the codeword vT,j . Note



that dT,i,j|x expresses the similarity between each feature
vector i and each codeword vT,j . These similarity values are
bounded between 0 and 1, while ||dT,i|x||1= 1, where ||·||1
denotes the l1 norm and dT,i|x ∈ RNK is the bin membership
vector for the i-th feature vector. The Gaussian kernel is
usually used [12]:

K(yT,i,vT,j) = exp
(
−||yT,i − vT,j ||22/2σ2) , (3)

where σ is the scaling factor for the kernel and ||·||2 denotes
the l2 norm. The final histogram for the BoF representation is
extracted by averaging over the membership vectors:

hT |x =
1

N

N∑
i=1

dT,i|x ∈ RNK , (4)

where N is the total number of extracted feature vectors as
described before. Similarly, we can calculate the vectors
hS|x ∈ RNK′ and dS,i|x ∈ RN ′

K for the student, where
NK′ is the number of codewords used for the student. The
codewords can be selected by gathering the feature vectors
extracted from several input samples and then clustering them
using k-means [10]. The centers of the clusters can be then
used as the codewords, while the scaling factor can be set
according to the standard deviation of each cluster. In this
work, we opt for using the discriminative way of training the
codewords proposed in [12]. Therefore, after initializing the
codewords using k-means, we used an additional auxiliary
classification layer to finetune both the codewords and scal-
ing factors for a few epochs, for betting fitting the data. The
codewords can be either fitted once, ideally after pre-training
the student network for a few epochs, or they can be occasion-
ally re-fitted during the optimization of the student network
to mitigate potential distribution shift phenomena. We have
experimentally established that fitting the codewords once,
after training for a few epochs, is usually enough for most
problems, as shown in Section 3.

BoF provides a straightforward way to estimate the dis-
crete marginal probabilities for the teacher over the NK code-
words as:

pYT (n|x) = hT,n|x, n = 1 . . . NK , (5)

where the notation hT,n|x is used to refer to the n-th element
of the vector hT |x. Similarly, the marginal probability for the
student is calculated as:

pYS (m|x) = hS,m|x, m = 1 . . . NK′ . (6)

These probabilities now express the probability of a fea-
ture vector arriving at the n/m-th bucket, respectively. We
slightly abuse the used notation and keep original subscripts
to make the derivation easier to follow without cluttering
the used notation. In order to estimate the joint distribution
p(YT ,YS)(n,m|x) we need to employ the membership vec-
tors to calculate the co-occurrence statistics. Therefore, we
first define the co-occurrence matrix as:

Cx =
1

N
dT,i|x ⊗ dS,i|x ∈ RNK×NK′ , (7)

where ⊗ refers to the outer product of two vectors. It is easy
to see that the matrix Cx calculates the probability of two
vectors to be drawn from the two distributions based on the
membership vectors. Then, we can trivially estimate the joint
probability distribution as p(YT ,YS)(n,m|x) = Cx,n,m.

The mutual information between the feature vector distri-
butions for the teacher and student model can be re-defined
using a discrete formulation and the probabilities estimated
before as:

(8)
I(YT ;YS |x, k) =

NK∑
n=1

NK′∑
m=1

(
p(YT ,YS)(n,m|x) ·

log

(
p(YT ,YS)(n,m|x)
pYT (n|x)pYS (m|x)

))
.

The aforementioned criterion can be applied at the same time
to multiple layer pairs between the student and teacher net-
works leading to the following loss:

LMI = −
∑
k∈K

αkI(YT ;YS |x, k), (9)

where K denotes the set of layers that will be used for knowl-
edge transfer and αk is a hyper-parameter for controlling the
relative weight of the k-th layer during the optimization. Note
that the proposed mutual information loss can be defined only
for feature distributions, i.e., it requires feature maps to be
calculated. To this end, it can be also combined with other
loss functions, e.g., cross-entropy loss for classification tasks
or distillation loss [5] for further improving the robustness of
the student network, as: L = Ltask + LMI , where Ltask

describes the loss for solving the task at hand. Note that the
whole formulation is fully differential and can be optimized
in an end-to-end fashion using regular back-propagation.

3. EXPERIMENTAL EVALUATION

The experimental evaluation of the proposed method is pro-
vided in this Section. First, we introduce the used datasets
and evaluation setup, and then we proceed by reporting the re-
sults of the conducted experiments. We used two well known
image datasets for the conducted experiments, CIFAR-10 and
CIFAR-100 datasets [13]. For both datasets we normalized
the input images using standard scaling, while we employed
image augmentation when training the teacher networks and
extended that to the student network for the CIFAR-100
dataset (horizontal flips and random crop with a padding of 4
pixels).

The proposed method was evaluated using a lightweight
VGG-based architecture that was proposed for high resolu-
tion analysis [14]. This architecture is fully convolutional,
allowing it to scale to arbitrary input sizes. The base recep-
tive field of the architecture is 32 × 32, while it consists of
four 3× 3 convolutional layers with 16, 16, 24, and 16 filters.



For all layers padding of 1 is used, while 2×2 pooling is used
after the second and fourth layer. The output is fed into a final
classification layer that flattens the output of the previous lay-
ers using a convolutional layer with NC filters of size 8 × 8,
where NC is the number of used classes. The aforementioned
architecture was used for defining the student networks. For
the teacher networks we used the same architecture after in-
creasing the number of filters by 3 times. We used the ReLU
activation function for the intermediate layers [15] and the
softmax function for the output layer. For the student net-
works, we target a physically realizable activation function,
the photonic sinusoidal activation [16], to evaluate the effec-
tiveness of the proposed method on such more challenging
scenarios where the network is deployed on photonic neu-
romorphic neural network accelerators. The networks were
optimized using the Adam optimizer with a learning rate of
0.0001 using the default parameters [17].

Instead of maximizing the mutual information for all the
layers at once, we opted for a layer-wise optimization setup,
which led to slightly better results in our experiments. More
specifically, we first optimize the mutual information between
the first layers of the networks for 50 epochs, next we proceed
to the second layers for another 50 epochs, etc. This process
is repeated for the four layers of the network for a total of 200
epochs. We also pretrained the networks for 10 epochs (20
for the CIFAR100 dataset) before learning the BoF represen-
tation in order to reduce the impact of potential distribution
shifts during the training process. The number of BoF code-
words was set to NK = NK′ = 12 for all the layers. Using
more codewords can improve the performance, especially for
more complex datasets. However, we opted for using a small
number of codewords in order to keep the complexity of the
proposed method as low as possibly. At this point, it is worth
noting that the proposed method does have any impact on the
inference time/complexity, since it is only employed during
the training phase. As a result, it does not affect the inference
complexity of the models.

We compared the proposed method with three other meth-
ods: a) using regular training using the cross-entropy loss,
b) using the knowledge distillation process [5], which can
only transfer the knowledge between the output layers of the
network, and b) using the PKT method that can transfer the
knowledge between arbitrary-sized representations extracted
from neutral networks [8]. To ensure a fair comparison the
same number of training epochs was used for all methods. For
distillation, we used a temperature of 2. For all the conducted
experiments, we used the same weight value for all layers,
i.e., a1 = a2 = ... = a, where we set a = 4 after performing
validation experiments. Similarly, the distillation and PKT
losses were weighted by 0.5 in the final loss function. For the
PKT approach, we flattened the feature maps before trans-
ferring the knowledge, since it cannot directly handle feature
maps composed of multiple feature vectors, while PKT loss
was also combined with cross-entropy.

Table 1. Evaluation on CIFAR-10 and CIFAR100 datasets
(mean accuracy and standard deviation of five runs are re-
ported). Best results are reported in bold, second best results
are underlined.

Method CIFAR 10 CIFAR100
Cross-entropy 73.03± 1.03 41.80± 0.90

KD [5] 73.40± 0.46 42.77± 0.65
PKT [8] 72.80± 0.54 41.33± 1.08

Proposed 74.60± 0.59 42.85± 0.72
Proposed + KD 74.73± 0.79 43.33± 0.19

The experimental results are reported for CIFAR-10 in Ta-
ble 1. Note that the employed architecture, which is tailored
towards mobile deployment on embedded devices with re-
stricted resources [14], has a quite constrained learning capac-
ity, since training with the regular cross-entropy achieves an
accuracy of about 73%. Training with the knowledge distilla-
tion approach (abbreviated as “KD”) can improve the perfor-
mance slightly. The PKT method on the other hand, despite
being designed to transfer the knowledge between represen-
tation of arbitrary dimensionality, fails to improve the perfor-
mance. We suspect that this is due to the high dimensional-
ity of the flattened feature maps used before applying PKT,
which reduces the effectiveness of density estimation used
by PKT. Note that this does not affect the proposed method,
since there is no need to flatten the extracted feature maps
and the individual feature vectors are handled directly. More-
over, PKT is known to overly regularize the training process
when the layers are not correctly matched [18]. On the other
hand, the proposed method improves the accuracy over 1%
over the next best-performing method. Furthermore, when
combined with the KD method further improvements are ob-
served. Repeating the experiments using ReLU activations
for the student leads to almost the same results, i.e., about
75% for the proposed method and 73.5% for the baseline net-
work. Finally, similar results are also reported for the CIFAR-
100 dataset, in which the proposed method outperforms the
rest of the evaluated methods.

4. CONCLUSIONS

In this work, we presented a fully differentiable and easy to
optimize in a end-to-end manner formulation of mutual infor-
mation, which can be used for transferring the knowledge be-
tween feature distributions of different networks. The effec-
tiveness of the proposed method was demonstrated using two
image datasets, especially compared to the PKT method that
also relies on an information-theoric formulation, but fails to
work with enormous feature maps. The proposed method is
model-agnostic and can be combined with most of the other
distillation methods. Finally, it can be also used with other
network architectures that generate multiple feature vectors,
such as 1-D convolution layers [19], and recurrent ones [20].
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