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Abstract—Illegal parking along with the lack of available
parking spaces are among the biggest issues faced in many
large cities. These issues can have a significant impact on the
quality of life of citizens. On-street parking systems have been
designed to this end aiming at ensuring that parking spaces will
be available for the local population, while also providing easy
access to parking for people visiting the city center. However, these
systems are often affected by illegal parking, providing incorrect
information regarding the availability of parking spaces. Even
though this can be mitigated using sensors for detecting the
presence of cars in various parking sectors, the cost of these
implementations is usually prohibiting large. In this paper, we
investigate an indirect way of predicting parking violations at a
fine-grained level, equipping such parking systems with a valuable
tool for providing more accurate information to citizens. To this
end, we employed a Deep Learning (DL)-based model to predict
fine-grained parking violation rates for on-street parking systems.
Moreover, we developed a data augmentation and smoothing
technique for further improving the accuracy of DL models
under the presence of missing and noisy data. We demonstrate,
using experiments on real data collected in Thessaloniki, Greece,
that the developed system can indeed provide accurate parking
violation predictions.

I. INTRODUCTION

Searching for a parking space in a large city is often very
challenging and frustrating for drivers, especially in crowded
areas like the city’s centre or around of points of interest. To
address this issue, many cities have implemented intelligent
on-street parking systems [1]. In such systems, available park-
ing spaces are often divided into sectors, with each sector being
composed of several parking slots. Drivers usually manually
update the system by stating the slot/sector where they have
parked, when paying the parking fee. In this way, the parking
system is updated and can provide useful information to drivers
in order to guide them to sectors that have free slots available.
However, when drivers park without providing the necessary
information to the system, i.e., usually to avoid paying the
parking fee, the system no longer has up-to-date information
regarding the availability of parking slots and cannot provide
useful information to other drivers. During peak hours, such
phenomena can often lead to a significant degradation in the
system’s performance, which lowers the trust of drivers to such
systems and discourages their use.

The aforementioned issue can be addressed by installing
street occupation sensors that can detect the presence of cars
in various parking sectors, e.g., either street sensors buried
under the road or vision-based systems [2]. However, the

cost of installing and maintaining such complicated systems
in large cities can outweigh the benefits of their installa-
tion. Furthermore, such systems tend to work better in more
constrained settings, e.g., in closed spaces, instead of public
parking systems that can span an entire city. In this work, we
investigate whether it is possible to acquire such information
using indirect measurements, such as weather information,
time and date, as well as historical data. More specifically, we
aim to predict illegal parking rates in different parking sectors
around a city. This information, along with the existing infor-
mation held by such systems (i.e., cars that are legally parked)
would allow for upgrading their operation with minimal cost.
Indeed, such an indirect prediction system would allow for
providing corrections to the number of available parking slots,
taking into account slots that might have been taken up by
illegal parking, redirecting users towards sectors that are more
probable to have free parking slots.

To this end, in this work we aim on developing a ma-
chine learning-based approach for predicting illegal parking in
various sectors of an on-street parking system. However, de-
veloping such a system poses significant challenges regarding
several aspects of its design, ranging from how the input data
are gathered and encoded to how the ground truth parking
violation data are collected. Despite the importance of this
problem, there is a relatively small number of works attempting
to address this issue. For example, in [3] parking violations
are predicted using random forests and existing open data,
while [4] tackles the problem of predicting double parking
events. However, the latter only focuses on double parking
events, while the former, despite solving a similar problem,
provides coarse information. In contrast, this paper focuses
on solving a fine-grained variant of the on-street parking
violation prediction providing information for hundreds of
sectors. Other approaches, such as [5], [6], attempt to directly
predict the number of available parking spaces instead of
focusing only on the illegal parking rate, potentially solving
a significantly harder problem. It is worth noting that most
of these approaches are often tailored to the specifics of each
parking system, available annotation type, and city structure,
so it is not always possible to directly apply them in other
scenarios.

The main aim of this work is to develop and evaluate
a Deep Learning (DL)-based on-street parking violation pre-
diction system that works integrated with on-street parking
systems. DL has been shown to outperform other approaches
for a wide variety of tasks [7], yet its application to novel



Fig. 1. A total of 19 PoIs were defined and used for representing various
sectors of the used on-street parking system.

domains remains challenging. Among the main challenges that
we face is the existence of sparse annotations, i.e., information
regarding illegal parking is only available when the police
scan for such cases. This poses significant challenges since
annotations can be especially noisy, i.e., having information
for a sector but not for neighboring ones. Directly using such
information in DL-based systems is challenging, since it is
known that DL models can be affected by such types of
annotations, which often leads to applying label smoothing
and distillation methods to mitigate these effects [8], [9],
[10]. To address these issues, we developed a novel data
smoothing and augmentation approach that assigns existing
ground truth annotation to spatial sectors and time slots,
leading to significant performance improvements. To the best
of our knowledge, this is the first time that such an approach
is applied in the context of an on-street parking violation
prediction system. Other challenges include imprinting input
data, such as the geographical location of each sector, time
and other information, such as pandemic measures (i.e., due
to COVID-19) in an efficient manner. Finally, we extensively
evaluate the proposed method using data from the THESi
system implemented in Thessaloniki, Greece.

The rest of the paper is structured as follows. Section II
introduces the proposed method, detailing all important aspects
of data pre-processing and model construction. Then, the
experimental evaluation is provided in Section III. Finally,
conclusions are drawn in Section IV.

II. PROPOSED METHOD

As described before, parking slots in public on-street
parking systems are divided into sectors. These sectors consist
the fundamental block for which we predict the rate of parking
violations. Given that the location and capacity of each sector
are known, we can directly use the parking violation predic-
tions for each sector in order to guide drivers towards sectors
where parking slots will be most probably available. The first
challenge we faced was to represent the geographical place of
a sector in a way that would allow DL models to generalize. To
this end, we avoided directly using a global coordinate system
and we opted for indirectly encoding sector information using
distances from several Points of Interest (PoI). A PoI is often
visited by citizens on a large scale and, as a result, it is crowded

most hours of the day. A PoI could be a sight, a central park,
a museum, the city hall, and others. Given that traffic and
demand for parking slots are higher across different PoIs, this
way of encoding the information can allow a DL model to
associate PoIs with expected parking violation rates, as well
as encode sectors using distances from these points. To this
end, we measured the distance between the center of each
sector and the selected PoIs and used this vector to represent
each sector. The way this information was encoded is shown in
Fig. 1, where blue circles represent the PoIs and the red circle
shows an example of a sector. A total of 19 points of interest
were employed, leading to a 19-dimensional representation for
each sector. The capacity of each sector was also included as
a feature.

Furthermore, we also included information regarding the
current weekday (Monday to Sunday), day (1 to 31), and
month (January to December) in order to allow the DL model
to encode historical information regarding the expected parking
violations. To capture the periodic nature of these features
and prevent discontinuities in the features we opted for using
sine-based encoding for all of these features. For example, the
weekday, denoted by xw was encoded as:

xw = sin
(
2π

w

7

)
, (1)

where w denotes the current day using sequential integer
encoding, i.e., 0 for Monday, 1 for Tuesday, etc. Similarly,
we extracted a feature for the current day xd as:

xd = sin
(
2π

d− 1

Nd

)
, (2)

where d is the current day (from 1 to 31) and Nd is the number
of days for the current month. Moreover, the month feature xm
was calculated as:

xm = sin
(
2π

m− 1

12

)
, (3)

where m is the current month (ranging from 1 to 12). As we
explain later in this section, the prediction horizon is one-hour.
Therefore, each day was also divided into time slots (each with
one-hour duration) and this information was also included the
extracted features. Note that time slots do not span the whole
day, since parking control is enforced from 7:00 until 19:00.
Therefore, we did not use sine encoding for these features and
we directly imprinted the temporal location of each time slot
as its distance from the time when parking control is enforced.

Apart from the location of each sector and time fea-
tures, weather conditions also often affect traffic and demand
for parking spaces. Therefore, we used the hourly values
of temperature and humidity. Temperature is represented in
Celsius degrees, while humidity is provided as a percentage of
the maximum possible humidity. Given that weather features
usually do not immediately affect the behavior of drivers, i.e.,
if the temperature rises, traffic is not immediately affected, we
opted for encoding weather features as the average of windows.
To this end, the current temperature feature xT for a time step
t was calculated as:

xT =
1

W

W∑
i=1

Tt−i, (4)

where Tt represents the temperature at the t-th time step and
W denotes the window size used for the averaging. Note that
we omitted the time step index t from the feature notation to



reduce clutter. In this work, we used the current and 5 previous
temperature measurements, i.e., W = 6. Humidity features xh

were similarly calculated.

Finally, two additional features we employed to enrich the
information that is available to the DL model. The first one is
a binary variable that is used to indicate whether the current
day is a public holiday. The other feature was used to indicate
whether the time slot belongs to a period of a pandemic or
not. We included this feature since we observed that during
the recent COVID-19 pandemic it was observed that traffic
was affected. Even though we used this feature to only mark
time slots that belong to COVID-19 pandemic, we suspect that
this feature might be also useful during subsequent flu seasons
due to increased public awareness.

All features were normalized using standarization, i.e.,
subtracting their mean and dividing by the standard deviation.
The training set statistics were used for the normalization
process. Also, the proposed prediction system operates on one-
hour time slots aiming to predict the parking violation rate for
each time slot and sector. The target parking violation rate is
calculated as:

p =
Ns

Nc
, (5)

where p denotes the target violation rate to be predicted, Ns

is the number of illegally parked cars and Nc is the capacity
of the specific sector at a specific time slot (again we omit
the sector and time slot indices to avoid cluttering the used
notation). The number of illegally parked cars is calculated
from police scan data. During such scans, a police officer scans
cars’ license plates that are parked in a sector. The scanner then
checks if the parking fee has been paid (or if the car can legally
park there without paying a fee) for each parked car. Then, this
information is used to calculate the number of illegally parked
cars within each sector and time slot. Then, each scan can be
assigned to the time slot that it is nearest to the center of each
time slot.

Even though a large number of scans exist, the ground
truth data remain sparse. For example, scans may concern
only a specific sector and no information might be available
for neighboring sectors at the same time. Furthermore, scans
might span more than one time slots, often leaving the first and
last time slots with very few scans, providing false information
regarding the ground truth parking violation rate. To overcome
this problem, we propose to distribute each scan to time
slots assuming that the violation rate follows a smooth curve.
This can mitigate annotation sparsity and discontinuity issues,
improving the performance of DL models, as also shown in
Section III.

To this end, we applied a Gaussian-based smoothing
scheme. After calculating the violation rate for each scanning
session, we distributed the observed violation rate to nearby
time slots using the following equation:

y =
1

|S|
∑
s∈S

exp(
−ds
σ

)ps, (6)

where s denotes a scanning session, S consists of scanning
sessions overlapping or being nearby (by a difference of one
time slot) to the current time slot, ds is the distance in minutes
of scanning session s from the current time slot’s center, ps
is the violation rate calculated for scanning session s and |S|

Fig. 2. The proposed data augmentation and smoothing method allows for
assigning observed violation rates into nearby time slots, reducing the impact
of sparse annotations and missing data scans.

denotes the cardinality of set S, i.e., the number of scanning
sessions that can be assigned to the current time slot. The
parameter σ controls the distribution process, i.e., a larger
value distributes the violations to the nearby time slots, while
smaller values allow for more steep changes in the parking
violation rate between slots. A value of d = 210 minutes was
used for the models developed in this paper. For example, if
we observe a rate of thirty five percentage (35%) of parking
violations in a sector at twelve and fifty (12:50), i.e., in “12:00-
13:00” time slot, then we can also assume that this rate should
be also partially assigned to the next time slot of “13:00-
14:00”, as shown in Fig. 2. As described before, this allows
for filling potential gaps in the data, reducing the impact of
sparse annotations and missing scans.

A. Model architecture

In this we work, we employed a residual DL architecture
for predicting the parking violation rate in different sectors.
The employed architecture is composed of six hidden layers
(each one with 512, 256, 128, 64, 128 and 32 neurons respec-
tively) and one output layer. The ReLU activation function was
used for the hidden layer [11], while a residual link was used
between the third and fifth hidden layers [12]. Using this link
allows for improving the prediction accuracy over architectures
that do not use residual connections. Also, further increasing
the size of the employed architecture is not expected to lead
to further accuracy improvements. The last layer employs a
sigmoid activation function, since it is used to predict the
parking violation rate, which is always bounded between 0
and 1. To avoid pushing the sigmoid function to its extremes,
we re-normalized targets between 0.1 and 0.9. The Adamax
optimization algorithm was used for training the model [13].
The mean squared error was used as the loss function. Finally,
the learning rate was initialized at 0.001 and an exponential
learning rate decay strategy with a decay rate equal to 0.25
was used for performing learning rate scheduling [14].

III. EXPERIMENTS

For all the conducted experiments, we used data collected
from Thessaloniki’s on-street public parking system called
THESi1. THESi consists of about 4700 parking slots in the

1https://thesi.gr



Fig. 3. Spatial distribution of parking violations. Darker values indicate
higher average parking violation rate per sector

city’s centre, which are distributed into 396 separate sectors.
The aim of the proposed method is to predict the parking
violation rate for each of these sectors. We used historical data
that consist of scans conducted by the city’s traffic police, as
well as weather data from OpenWeather2. A total of 3.8 million
scans that were captured through 300,000 checks were used in
the conducted evaluation. Furthermore, we manually defined
19 PoIs used for encoding the distances for each sector, as
described in Section II. Also, we used 80% of the data to
train the model, while the remaining 20% was used to test
the model. The mean absolute error (MAE) was used as the
evaluation metric.

We provide a brief data analysis before using the collected
data for predicting parking violations. Parking violation rate
ranges between zero (0) and one (1), while the average
parking violation rate is 0.41. Given that an average sector
has eleven parking slots, this parking violation rates means that
three to four (3-4) parking slots are expected to be illegally
occupied. We also examined the spatial distribution of parking
violations in Fig. 3, where darker colors indicate a higher
parking violation rate. The higher mean parking violation of
a sector is 0.78, while the lower is 0.1. We observe a higher
parking violation rate in the upper region of the city. Another
observation is that parking violations are higher in remote
sectors. This can be probably explained since drivers might
believe that these sectors are not as frequently scanned for
illegal parking.

The evaluation results are reported in Table I. The baseline
model without any smoothing achieves a MAE of 0.175,
which demonstrates that we can accurately predict the parking
violation rate using the proposed method, since the MAE of
a baseline average value predictor (using the average viola-
tion rate as the prediction) is 0.251. Furthermore, using the
proposed data augmentation and smoothing method for the
train set allowed for further reducing the error to 0.169 on the
original test set, while the error dropped to 0.146 when the
data smoothing methodology was applied to the whole dataset.
These results demonstrated the importance of employing the
proposed data augmentation and smoothing approach to fill
missing data and reduce data discontinuities.

2https://openweathermap.org

Fig. 4. Validation error during training when using two different setups and
evaluation sets.

TABLE I. PARKING VIOLATION RATE PREDICTION EVALUATION

Method Raw Test Set (MAE) Smoothed Test Set (MAE)

Without Smoothing 0.175 0.173
With Smoothing 0.169 0.146

We also conducted a 4-fold cross validation experiments,
where we monitored the validation MAE during the training
epochs, to select the most appropriate number of training
epochs for each model. The results are provided in Fig. 4.
Note that using the smoothed training set leads to significant
improvements over directly using the raw training set. We also
plotted the MAE for the smoothed validation set, where again
we observe that the training process converges smoothly, while
achieving significantly better MAE, confirming the results
reported in Table I.

IV. CONCLUSIONS

In this work, we presented and evaluated a DL-based model
for on-street parking violation prediction. Several challenges
were faced during the development of such a system, ranging
from data sparsity challenges to encoding data in the most
appropriate format for the employed DL model. To address
these issues, we developed a novel approach that assigns the
existing ground truth annotation to spatial sectors and time
slots, leading to significant performance improvements. Other
challenges include imprinting input data, such as the geograph-
ical location of each sector, time, and other information, such
as pandemic measures (i.e., due to COVID-19) in an efficient
manner. We evaluated the proposed method using novel data
from the THESi system implemented in Thessaloniki, Greece,
while we also presented various aspects of the employed
data to provide more insight into this especially challenging
problem.

There are several interesting future research directions.
First, graph neural networks can be used to better model spatial
relations between sectors [15]. Furthermore, traffic on city
streets can affect the rate of parking violations, hinting that this
could be an additional feature that can be included to further
improve the performance of the presented model. Furthermore,
even though city traffic information can be a valuable predictor,
this information typically is not available for all sectors/roads,
requiring the use of methodologies that can work even under
the presence of partial information and/or employ methods for
adaptively normalizing the input data and adjusting to the input
distribution [16].



REFERENCES

[1] F. Vital, P. Ioannou, and A. Gupta, “Survey on intelligent truck park-
ing: Issues and approaches,” IEEE Intelligent Transportation Systems
Magazine, vol. 13, no. 4, pp. 31–44, 2020.

[2] C.-F. Yang, Y.-H. Ju, C.-Y. Hsieh, C.-Y. Lin, M.-H. Tsai, and H.-L.
Chang, “iparking–a real-time parking space monitoring and guiding
system,” Vehicular Communications, vol. 9, pp. 301–305, 2017.

[3] S. Gao, M. Li, Y. Liang, J. Marks, Y. Kang, and M. Li, “Predicting
the spatiotemporal legality of on-street parking using open data and
machine learning,” Annals of GIS, vol. 25, no. 4, pp. 299–312, 2019.

[4] J. Gao and K. Ozbay, “A data-driven approach to predict double
parking events using machine learning techniques,” in Proceedings of
the Transportation Research Board’s Annual Meeting, 2017, pp. 8–12.
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