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Abstract—Deep Learning (DL) has been extensively used
in challenging tasks including security applications such as
Distributed Denial of Service (DDoS) attacks. However, the high
speed requirements of such applications along with the high
complexity of DL models restrict the practical use of DL in
real systems. Photonic neuromorphic hardware provides several
advantages over electronic counterparts since it can operate at
very high frequencies with lower power consumption. To this
end, in this paper, we propose employing a photonic neuromor-
phic lookaside accelerator, aiming to perform real-time traffic
inspection, enabling us to detect port-scanning attacks, which
are indicative of DDoS attacks. We have designed, trained, and
evaluated a Photonic Neural Network (PNN) capable of detecting
DDoS attacks and operating on such photonic neuromorphic
lookaside accelerators. The experimental evaluation is performed
on Transport Control Protocol (TCP) traces obtained by simu-
lating a port scanning attack and demonstrates the effectiveness
of the proposed approach.

I. INTRODUCTION

DL has been widely applied by both the academic commu-
nity and industry, leading to state-of-the-art performance [1].
Over the recent years, there is an increasing interest in employ-
ing DL on real time intrusion and flooding attack detection,
such as detection of DDoS attacks, employing different types
of Artificial Neural Networks (ANNs) [2], [3]. DDoS attacks
are commonly performed by multiple infected zombies/agents
systems that are designed to attack a particular target or
network with different types of packets [4]. DDoS attacks have
been extensively studied and their detection is prioritized since
they can cost organizations and individuals a great amount of
time, money and reputation. Although DL seems an attractive
approach to early detection and prevention of such attacks,
the high complexity of DL models along with the high speed
requirements of network applications generally prohibit the
application of such DL approaches in most practical settings,
since powerful hardware is required that increases both cost
and energy consumption [5]. Over the recent years, specialized
accelerators have been developed to serve the demanding
nature of DL, ranging from Tensor Processing Units (TPUs) [6]
to advanced neuromorphic hardware [7], increasing both train-
ing and inference speed, while also reducing power and
energy consumption. To this end, photonic hardware is gaining
attention as a very promising approach [8], due to its ability to
provide ultra-fast matrix-based operations with very low power
consumption [9], [10]. In neuromorphic photonics, signals are

encoded using light, instead of electrical quantities, which are
then manipulated to provide the neuron’s functionality [11],
[12]. Such approaches exploit the massive parallelism poten-
tial [13] and the ability of photonic components to operate at
ultra-high frequencies [14] and form them in purely optical
and/or advanced electro-optical devices [15], [16] exceeding
their electronic counterparts in terms of bandwidth, speed,
and energy consumption. These advantages have fueled the
research on developing PNNs that can be efficiently deployed
on such platforms.

Indeed, neuromorphic photonics are capable of operating
at very high frequencies and can be integrated on a backplane
pipeline of a modern high-end switch, which makes them an
excellent choice for challenging DDoS detection applications,
where high-speed and low-energy inference is required. How-
ever, despite these advantages, training ANNs that are oriented
to photonic hardware also introduces new challenges to the
DL training arising from photonic hardware. More specifically,
PNNs rely mostly on sigmoid [16] and sinusoidal [17] based
activation functions that are susceptible to early saturation, in
contrast to traditionally used functions (such as ReLU [18]).
Additionally, current photonic architectures face difficulties in
supporting extremely large architectures that are traditionally
used in modern DL. Therefore, despite these advantages, PNNs
require a significantly different training pipeline in order to
ensure that the resulting models will behave similarly to regular
DL models that are deployed in software.

The main contribution of this work is the development of a
DDoS detection PNN model that can be appropriately trained
after taking into account the hardware limitations that arise
from photonic neuromorphic accelerators. More precisely, we
propose to prevent DDoS attacks during the reconnaissance
attack (RA) phase, when the attacker tries to determine critical
information about the target’s configuration. Before deploying
a DDoS attack, a port scanning procedure is compiled to
track open ports on a target machine, as shown in Figures 1a
and 1b. During this procedure, port scanning tools, such as
Nmap [19], create synthetic traffic that can be captured and
analyzed by the proposed PNN. We evaluated the proposed
architecture on synthetically obtained data simulating port-
scanning and collecting the transport control protocol (TCP)
traces on the targeted machine. Furthermore, to demonstrate
the generality of the proposed method, we also employed two
different photonic activation functions that correspond to two
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Fig. 1: Port scanning using SYN scans

different photonic neuromorphic configurations.

The rest of the paper is structured as follows. In Section II
the proposed method is presented where the proposed hardware
pipeline is presented along with the proposed architecture.
Then, we experimentally evaluate the proposed setup in Sec-
tion III. Finally, in Section IV conclusions are drawn.

II. PROPOSED METHOD

A. DDoS attacks and neuromorphic lookaside accelerators

In this paper we build on the concept of a neuromorphic
lookaside accelerator, targeting to perform real-time traffic in-
spection, searching for DDoS attack patterns. However, further
evaluation of this architecture pointed towards the identifica-
tion of RA patterns rather than DDoS attack patterns, allowing
for more timely and efficient recognition of a cyberattack.

RA is a common way to prepare a cyberattack on commu-
nication infrastructure, such as distributed DDoS. The tech-
nique involves the collection of probe responses that target
discovering available services. An RA is typically a carefully
engineered stealth attack that does not raise an alarm at the
target site. An RA usually involves sending synthetic control
traffic that generates random probes in an effort to collect the
aforementioned probe responses, and thus discover available
services. In other words, an RA typically sends adversarial
control packets in order to characterize the infrastructure to be
attacked. The very low traffic volume and rate of adversarial
control packets, as compared to data traffic volume/rate, makes
it practically impossible to detect the RA in real time using
existing techniques.

RAs can be implemented with various algorithms. For
example, in the case of TCP communications, a possible
approach is to leverage TCP control messages for connection
establishment and tear down, while tricking the remote server
into sending responses that reveal whether a port is open or
closed and what service it provides. In case of user datagram
protocol (UDP) communications, probes may be sent to known
service ports with known service requests in anticipation of
receiving a response.

Typically, during an RA a small number of seemingly trust-
worthy control packets, such as TCP packets, UDP packets, or
internet control message protocol (ICMP) packets, are sent to
a particular point, such as to an N-port switch. Trying to hide
in normal (data) traffic, the adversary network protocol traffic
during RA is usually very slow and hence spans a relatively
long-time window (e.g., 0.1 milliseconds) in order not to
trigger high-traffic anomaly alarms that can be easily captured
with simpler observation of statistics. Without an advance
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Fig. 2: Photonic activation functions in reference to tradition-
ally used activation functions

warning, the subsequently cyber attacked infrastructure may be
damaged with the possibility of severe consequences. Timely
detection of RAs, such as port scans, allows taking proactive
measures to mitigate an imminent cyberattack like DDoS,
for example by slowing down port connection and filtering
of malicious IPs, and thereby to protect against severe socio
economic consequences of such cyberattacks.

The detection technique performs real-time monitoring
of ingress and egress traffic of control message packets. A
processor analyzes in real-time metadata that is indicative of
a temporal pattern of control messages communicated via one
or more ports of a network device and identifies an RA on
the network device by applying a DL-based DDoS detection
algorithm to the temporal pattern of the control message traffic
only. The rationale is that when a port scan (e.g., a TCP port
scan) is in progress, the ingress traffic control messages and
egress traffic control messages (e.g., TCP messages) that are
exchanged in a given time window exhibit a detectable pattern
anomaly as compared to normal control message traffic. For
example, port scans may probe many dead ports, resulting in
different flows of control message responses from hosts that
affect the normal control message traffic pattern as it evolves
in time.

To address this, a system-level design that includes cou-
pling a processor optimized for AI, such as a neuromorphic
coprocessor, to a backplane pipeline of a modern high-end
switch can be employed. The architecture includes a processing
circuitry that pre-processes and transforms specific switch
telemetry data in real time, for direct feed to an AI processor,
such as photonic neuromorphic coprocessor. The coprocessor
is configured to instantly detect RAs happening within a small
time frame of a few milliseconds over an entire set of ports of
a network device. Therefore, for instance, a security scan of
several tens of ports of a switch would take a few milliseconds
to detect an RA, making it possible for the system to monitor
hundreds of ports in real time (e.g., at a rate of 100 Hz).

B. Neuromorphic DL Training for DDoS detection

Fully connected PNNs similarly to software implemented
ANNs are based on perceptron with their ultimate goal to
approximate a function f∗. The training process is applied
on software and then the PNNs parameters are deployed to
the photonic hardware. More precisely, the PNN is trained
iteratively using a training dataset that contains samples com-
posed of the input signal that is denoted as x ∈ RM , where M
represents the number of features. Every sample in the train
dataset is annotated using a binary label vector t ∈ R2, which
is equal to [1, 0]T for samples that do not belong to DDoS



attack periods, indicating that the first output neuron of the
model should activate (benign traffic). For samples that do
belong to DDoS attack periods this vector is set to to [0, 1]T ,
indicating that the second output neuron of the PNN should
be activated (malicious traffic).

Multilayer perceptron (MLP) approximate f∗ by using
more than one layer, i.e., fn(...(f2(f1(x;θ1);θ2);θn) and
learn the parameters θi, where 0 ≤ i ≤ n with θi consisting of
weights wi ∈ RNi×Mi and biases bi ∈ RNi . Ni and Mi denote
the output and input dimensionality of each layer respectively,
while n is the total number of layers. Subsequently, each
layer’s output is denoted as:

zi = wiyi−1 + bi. (1)

In turn, the output of the linear part of each neuron is fed to
a non-linear function g(·), named activation function, to form
the final output of the layer:

yi = fi(yi−1) = g(zi). (2)

The training process is guided by the loss function J(y, t),
where t represents the training labels and y the output of
the network, which defines the correction step of the trainable
parameters for every training step calculated by the backpropa-
gation algorithm [20]. The cross-entropy loss is typically used
in classification defined as:

J(y, t) = −
N∑
c=1

tc log yc, (3)

where N is the number of classes / output neurons of the
network. The weight and biases of each layer are updated
according to the propagated loss given by:

∆bi = −η
∂J

∂bi
, and ∆Wi = −η

∂J

∂Wi
. (4)

After the training procedure, the weights and biases are
deployed to the neuromophic photonic hardware for the in-
ference phase. However, currently available hardware does
not support traditionally used activation functions due to the
unique nature of analog computing and the typically used
photonic hardware configurations. To this end, we take into
account the actual transfer function of the optical activation
function during the training procedure. In this case of study
two photonic activation functions are used, as shown in Fig. 2.
The first one is the photonic sigmoid activation function [21],
defined as:

g(z) = A2 +
A1 −A2

1 + e(z−z0)/d
, (5)

where the parameters A1 = 0.060, A2 = 1.005, z0 = 0.154
and d = 0.033 are tuned to fit on the experimental observations
as implemented on real hardware devices [21].

The second photonic activation function considered in this
paper is a sinusoidal activation function, which corresponds
to photonic activation layout that employs a Mach-Zender
Modulator device (MZM) [22] to convert the data into optical
signal along with a photodiode [23]. Note the similarity
between this activation function and ReLu between 0 and 1,

Fig. 3: TCP traces used for the training and evaluation datasets

as shown in Fig. 2. The transfer function of this photonic
activation is:

g(z) =


0, if z < 0.

sin π2

2 z, if 0 < z < 1.
1, if z > 1.

(6)

It should be noted that the narrow activation range of the input
domain of these photonic activations causes additional training
difficulties, since networks tend to be easily saturated, leading
to slower convergence, while in some cases this can even halt
the training process [24].

In this work we employ a single hidden layer MLP, that can
be implemented using the currently available photonic hard-
ware taking as input 6 features that correspond to the statistics
obtained from the TCP layer. More precisely, the PNN takes as
input the percentage of each TCP flag (SYN, FIN, and RST)
for the total ingress packages and the percentage of each TCP
flag for the total egress packages, resulting in 6 values for
every selected time window. After the hidden layer, a photonic
activation function is applied. The classification layer consists
of two neurons and it classifies a trace within the time window
either as benign or malicious.

III. EXPERIMENTAL EVALUATION

We compiled a dataset by monitoring a node of the network
in which we perform SYN port scanning to collect positive
samples. Periods of benign traffic also exist to provide the
negative/benign samples. Three traces were generated: a) a
malicious trace, b) a benign trace, and c) a mixed trace.
Each TCP package is labeled according to the timestamp
that is transmitted, enabling us to compile labeled datasets
to perform supervised learning. We created two datasets, one
for the training and one for the evaluation, including six
features that correspond to the percentage of the TCP flags
involved during 3 ms. The training dataset is formed by
appropriately concatenating the malicious and plain traces,
resulting in 23,473 records of which 30.97% are malicious.
The evaluation dataset includes 12,604 records, from which
7.56% are malicious. A slice of the resulting time-series for
both the train and evaluation datasets is depicted in Figure 3.
Please note that we assume that every sample in the training
dataset refers to a specific time-window that is labeled as
malicious if inside this window a port scanning is performed.
Otherwise, this sample is labeled as benign.

We demonstrate the experimental results of a lightweight
fully connected PNN, which consists of 6 neurons on the
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Fig. 4: Confusion matrices presenting the best evaluation run of each employed architecture

input layer, 10 neurons on the hidden layer and 2 neurons
on the output layer that is capable of detecting DDoS attacks
precisely in a high frequent manner (3 milliseconds) holding
the credentials that can be implemented in photonic hardware.
More specifically, we evaluate four different architectures: a) a
baseline architecture that is implemented with ReLU activation
function, b) a second baseline architecture employing sigmoid
activation function, c) a sigmoid photonic architecture based on
parameters arisen from experimental observation on real hard-
ware implementation and d) a sinusoidal photonic architecture.
During the training, we sampled data with replacement from
the malicious class to overcome limitations arising from using
a highly imbalanced dataset. The Adam optimizer is used for
15 training epochs with a learning rate equal to 0.0001, while
batches of 32 samples are used.

We report the average Cohen’s κ score [25] and the
variance over 10 evaluation runs in Table I. As it is shown, the
employed lightweight network can lead to sufficient classifi-
cation performance. Both photonic architectures achieve better
kappa scores in the average case than the traditional activation
functions, the accuracy of the photonic models is sufficient
enough for such a challenging task, while keeping all the
advantages of the photonic substrate. It is worth noting that
using the ReLU activation leads to significantly lower DDoS
detection performance. This can be attributed to the intrinsic
property of the ReLU activation [18], which is completely
deactivated for half of its input range (negative values). This
usually does not negatively impact the performance of net-
works, when enough neurons are available. However, when
ReLU is used in lightweight architectures with a small number
of neurons, it can lead to significant information loss, since
we can expect that for normally distributed inputs, half of
the neurons will be deactivated. Indeed, for the employed
lightweight architecture this can lead to deactivating half of
the neurons of the hidden layer, reducing the effective number
of active neurons to 5. As a result, using ReLU essentially
reduces the effective capacity of the network, compared to
sigmoid activations. A similar effect is also observed for the
sinusoidal function.

By comparing the confusion matrix of the best run of
each different architecture, depicted in Figure 4, we observe
that traditionally used activation functions have a significantly
high false positive rate in contrast to photonic activation
functions. In such security applications, a high false positive
rate increases the sensitivity of a system (higher recall) but
also increases the possibility that the prediction could be false
positive (lower precision) resulting in systems that are difficult
to be used in practical scenarios. On the other hand, photonic

TABLE I: Average kappa score and variance for each archi-
tecture

Activation Function Kappa score

Baseline Architectures

Relu 0.7785 ± 0.0760
Sigmoid 0.8067 ± 0.0167

Photonic Architectures

Photonic Sinusoidal 0.8535 ± 0.0423
Photonic Sigmoid 0.8788 ± 0.0218

activation results in higher precision models eliminating the
false positive rate to zero. Thus, when the model outputs
that there is malicious traffic, it indicates that indeed a port-
scanning is occurring and a further examination should be
contacted by the network’s administrators. Furthermore, ReLU
activation has significantly unstable performance highlighted
by the fact that even though on the average case is significantly
worse than the sigmoid one, in the best case achieves slightly
better performance. This confirms the aforementioned weak-
ness of ReLU activation in lightweight architectures. Even
when a variance-preserving initialization scheme is used [26],
leading to a reduction in the number of active neurons and
significantly affecting the classification layer outputs. The
employed photonic architectures result in models with higher
performance in contrast to traditionally used activations with
the photonic sigmoid to achieve the best performance among
all architectures.

IV. CONCLUSIONS

In this work, we examined a method for preventing DDoS
attacks using PNNs. More precisely, we proposed an ANN
architecture based on photonic activation functions that can
be integrated on a backplane pipeline of a modern high-end
switch and that can effectively detect port scanning in a target
machine using TCP traces. We evaluated the proposed method
on synthetically obtained data, which are simulating port-
scanning attacks, demonstrating that they can lead to adequate
performance.
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