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ABSTRACT

Deep Reinforcement Learning methods have provided power-
ful tools to train profitable agents for financial trading. How-
ever, the noisy and non-stationary nature of financial data of-
ten requires carefully designed and tuned input normaliza-
tion schemes, since otherwise the agents are unable to con-
sistently perform profitable trades. To overcome this limita-
tion, in this work we propose a deep adaptive input normal-
ization approach specifically designed to train DRL agents for
financial trading directly using the raw price as input, with-
out any additional pre-processing. The proposed method con-
sists of two trainable neural layers that are designed to per-
form adaptive normalization, i.e., normalize the input obser-
vations after (implicitly) identifying the distribution that was
used for generating them. Furthermore, instead of normaliz-
ing the whole input at once, the proposed approach performs
group-based normalization, which allows for better capturing
fine variations in the price trends. Despite being simple to
implement and apply, the proposed method can lead to enor-
mous improvements over existing the normalization methods,
as demonstrated through the experiments conducted on two
challenging FOREX currency pairs.

Index Terms— Deep Reinforcement Learning, Financial
Markets, Trading, Normalization

1. INTRODUCTION

Financial markets are the place where different assets are be-
ing traded and investors have the opportunity to make prof-
itable decisions, given that they correctly predict the assets’
movements. As a result, a large number of tools for financial
trading has been developed, ranging from quantitative analy-
sis [1], to more recent deep learning-based approaches [2–4],
giving investors better tools to be able to perform profitable
trades. A significant amount of research has originally fo-
cused on quantitative analysis, which uses mathematical and
statistical models to better understand the behavior of vari-
ous assets. However, the advent of automated trading, which
allows for collecting an enormous amount of data in a short
period of time, while also imposing strict time constraints for

making prompt decisions, limits the usefulness of such quan-
titative methods.

The aforementioned observations have increased the use
of Deep Learning (DL)-based approaches for financial trad-
ing, ranging from methods that attempt to predict the future
behavior of various financial assets using supervised learn-
ing [2,3,5], providing useful signals for developing successful
trading strategies, to fully automated reinforcement learning-
based trading agents [4, 6–8]. The latter approaches allow for
directly training an agent for the task at hand, i.e., learning
how to perform profitable trades in stochastic and noisy finan-
cial environments, instead of training agents that solve proxy
problems, such as predicting the short term price movements
of an asset and using these prediction to develop hand-crafted
strategies. Indeed, recent evidence suggests that such Deep
Reinforcement Learning (DRL) approaches [6, 8], capable of
combining the ability of DL to extract meaningful features
from noisy environments and Reinforcement Learning (RL)
to discover profitable policies, led to agents that can consis-
tently perform profitable trades.

Despite its success on various tasks [9, 10], DRL often
suffers from a significant drawback: it is notoriously diffi-
cult to train DRL agents, requiring careful tuning of the train-
ing hyper-parameters in order to ensure smooth convergence.
As a result, a wide range of methods that can improve the
convergence of the training process are usually applied, rang-
ing from combinations of different empirical “tricks” [10], to
reward shaping approaches [6, 11] that can further stabilize
the training process. These inherent instabilities of DRL ap-
proaches are further exacerbated by the noisy nature of finan-
cial data, often requiring extensive testing of different input
normalization approaches in order to select the most appro-
priate one for the task at hand. Indeed, as we also demonstrate
in Section 3, even state-of-the-art DRL optimization methods
often fail to converge for a wide range of input normalization
strategies. It is worth noting that this behavior still emerges
even when sophisticated hand-crafted stationary features are
used for training. To better understand the effect of such sub-
optimal normalization schemes we need to consider the fol-
lowing training dynamics: The last layers of a network are the
first to adapt to the task at hand. However, if a sub-optimal



normalization scheme that suppresses useful features is em-
ployed, then the first layers will not be able to promptly re-
cover these features, leading to converging into a sub-optimal
local minimum. Indeed, recent evidence suggest that such
critical learning periods exist in neural networks [12]. At
the same time, most of the existing input normalization ap-
proaches, such as standardization, i.e., subtracting the mean
value of the data and dividing the result with the standard de-
viation, are fixed and unable to promptly adapt to the task at
hand, which could provide a way to partly alleviate this issue.

These observations lead us to the main research question
of this paper: Is it possible to derive a trainable normaliza-
tion scheme that will allow for quickly shifting the input into
the appropriate region of the input space, stabilizing and ac-
celerating the training process for DRL approaches? Using
trainable input normalization schemes [13] can indeed lead
to significantly improved performance for supervised Deep
Learning applications. However, to the best of our knowl-
edge, there has been no attempt to employ and further adapt
such methods for use with DRL methods for financial trading
tasks.

To this end, in this work we propose a deep adaptive input
normalization approach, specifically designed for training
DRL agents for financial trading using the raw input price as
input. The proposed method consists of two trainable neural
layers that are designed to perform adaptive normalization,
i.e., normalize the input observations after (implicitly) iden-
tifying the distribution that was used for generating them.
In this way, the proposed method allows for overcoming is-
sues arising from the non-stationary nature of financial data.
Furthermore, instead of normalizing the whole input at once,
the proposed approach performs group-based normalization,
which allows for better capturing fine variations in price
trends. A group’s normalization parameters are dynamically
inferred using the statistics extracted from every group. In
this way, a slightly different normalization scheme can be
applied for each group. Finally, the proposed method is
trained in an end-to-end fashion along with the rest of the
model in order to solve a specific DRL task. This allows
to promptly adapt the input of the DRL model to the task
at hand, overcoming - to some extent - the aforementioned
issues. The proposed method can be combined with any DRL
method, i.e., both policy-based and value based approaches.
The effectiveness of the proposed approach is demonstrated
through experiments conducted on two FOREX currency
pairs and compared to several other handcrafted, as well as
state-of-the-art trainable normalization approaches, such as
Layer Normalization [14]. Indeed, the proposed method sig-
nificantly stabilizes the training process, as well as it also
enables us to directly use raw prices for trading. In this way,
it overcomes a significant obstacle of existing DL approaches
(which typically require carefully designing and employing
handcrafted stationary features). Finally, another interesting
finding from our experiments was that the proposed method

combined with simple models (MLPs) performed better than
more powerful models, such as CNNs, regardless the used
normalization approach and despite using less parameters.
Therefore, we conjecture that using more powerful and adap-
tive normalization approaches might allow for reducing the
overall complexity of the DL models, since distribution shift
phenomena that might arise are reduced, allowing smaller
models to perform as well as (or even better) than more
complex ones.

The rest of the paper is structured as follows. First, the
proposed method is analytically derived in Section 2, while
the experimental evaluation is provided in Section 3. Fi-
nally, conclusions are drawn and future research directions
are briefly discussed in Section 4.

2. PROPOSED METHOD

The proposed method is presented in this Section. First, es-
sential information regarding financial trading and a detailed
description of the proposed method are introduced. Then, the
experimental approach employed for training and evaluating
the DRL agents is provided.

Let xt = [pt−N−1, pt−N−2, . . . , pt] ∈ RN be the input
to a DRL agent at time t, where N is the length of the in-
put and pi is the price of an asset at time i. The goal of our
agent is to learn a policy in order to perform profitable trades,
i.e., hold a profitable position in the market. In this work, the
agent supports three actions: a) “long position”, when an as-
set is purchased, b) “short position”, when a borrowed asset is
sold, and c) “exit”, where the agent exits the market. In order
to support training DRL agent an appropriate simulation en-
vironment that returns the profit of each action performed by
the agent was developed. Therefore, the agent can be trained
to maximize a proxy to the Profit and Loss (PnL) metric, sim-
ilar to the relevant literature on financial trading [4, 6]. The
reward at each time step t is defined as:

rt =
(mt − pt)

lt
· at − ct, (1)

where pt is the current price of the asset,mt is the mean value
of the next ten prices of the asset, lt is the last transacted price
and at is the action that the agent has chosen, i.e., 1 for the
long position, −1 for the short position and 0 when the agent
has exited the market (so it received no profit or loss). Note
that exiting the market does not terminate the training process
and the agent has the opportunity to reenter in it. The em-
ployed reward is not equivalent to the actual PnL, since the
average of the next 10 prices is used instead of the immedi-
ate next price. However, this modification allows for signifi-
cantly improving the training stability, by filtering out poten-
tial noise. Note that during the evaluation the actual PnL is
reported. The commission the agent pays at each time step is
denoted by ct in (1) and it is calculated as:

ct = |at − at−1|c. (2)



where at and at−1 are the current and previous actions re-
spectively and c is the commission fee. Again, c is typically
set to a value slightly higher than the actual commission paid
to account for price slippage and possible risks [4]. Note that
the difference between the two actions is 0 when the agent
holds the same position, 1 when the agent switches its posi-
tion from 1 or −1 to 0 or vice versa and 2 when the agent
switches from −1 to 1 or vice versa. Therefore, the agent is
penalized when it frequently changes its position.

The proposed method employs two trainable layers: a)
an adaptive shifting layer and b) an adaptive scaling layer.
The way the proposed method works is summarized in Fig. 1.
Before feeding the data into these two layers, the input data
vector xt ∈ RN is first reshaped into a tensor x(g)

t ∈ Rg×n,
where g is the number of groups employed for the normaliza-
tion and n = dN/ge is the number of price values within each
group. Note that each group contains successive price values.
The tensor x(g)

t can be appropriately padded with zeros if the
length of input time series cannot be exactly divided with the
number of groups. Then, a summary (average) representation
is extracted from each input group as:

µt =
1

n
x
(g)
t 1n ∈ Rg, (3)

where 1n ∈ Rn is an n-dimensional unit vector, i.e., a vector
that contains only the value of 1. This summary representa-
tion is used to estimate the distribution from which the values
of each group were sampled. This estimate is then used to cal-
culate how the data from each group must be shifted in order
to facilitate the task at hand. The shifting factor is calculated
separately for each group by

µ(x
(g)
t ) = W1µt ∈ Rg, (4)

where the parameter matrix W1 ∈ Rg×g is learned during
the training process of the model and allows for taking into
account the information extracted from all the groups before
shifting the data. Therefore, the output of the first layer is
calculated as:

x̃
(g)
t = x

(g)
t − µ(x

(g)
t ) ∈ Rg×n, (5)

assuming that the values of µ(x(g)
t ) are appropriately broad-

casted (repeated n times). We did not explicitly redefine
µ(x

(g)
t ) to avoid cluttering the used notation.
The second layer of the proposed method works similarly,

but instead of shifting the input, it performs adaptive scaling
on each input. Therefore, we first calculate a summary repre-
sentation over the output of the previous layer as:

σt =
1

n
x̃
(g)
t � x̃

(g)
t 1n ∈ Rg, (6)

where the notation � is used to refer to the element-wise
(Hadamard product) multiplication between two matrices.

Note that the quantity σt allows for estimating the variance
of the original input x(g)

t over each group. Then, we similarly
estimate the scaling factor for each group as:

σ(x
(g)
t ) = W2σt ∈ Rg, (7)

where again the parameter matrix W2 ∈ Rg×g is learned
during the training process of the model and allows for taking
into account the correlations between the groups before scal-
ing the data. The final output of the proposed layer is obtained
as:

˜̃x
(g)

t = x̃
(g)
t /(σ(x

(g)
t ) + ε) ∈ Rg×n, (8)

assuming again that the values of σ(x(g)
t ) are appropriately

broadcasted and ε is a small positive value used to ensure the
numerical stability of the calculations. Then, the values of
˜̃x
(g)

t can be flattened and fed to the network employed for
learning the policy of the agent:

at = fW(˜̃x
(g)

t ) ∈ R3, (9)

where W are the parameters of the agent fW(·), while the
vector at contains the probability estimation for each of the
three actions supported by the agent (long, short, exit). The
DRL agents employed in this work are directly trained using
the Proximal Policy Optimization (PPO) algorithm [9]. The
same model architecture, along with the proposed normaliza-
tion layer, are used for both the actor and critic models, while
no weight sharing is employed. The advantage is calculated
as: Rt(λ)−Vt, whereRt(λ) is the λ-return at time t and Vt is
the value the critic estimate at time t. We used the TD(λ) re-
turn instead of the more conventional Monte-Carlo return that
provided an unbiased but high-variance return [15]. On the
contrary, TD(λ) is more appropriate for noisy tasks, such as fi-
nancial trading, since the trade-off between variance and bias
can more easily be controlled using the λ parameter. After
running each episode and collecting the rewards needed for
calculating the advantage, both actor and critic were updated.
Note that the proposed layer is fully differentiable and can be
trained in an end-to-end fashion along with the rest of the ar-
chitecture using backpropagation. After the training process
is completed the actor selects the action that corresponds to
the highest probability. Finally, note that employing agent
ensembles allows for taking into account the decision of mul-
tiple agents, increasing the decision making robustness [16].

3. EXPERIMENTAL EVALUATION

For developing the employed financial trading environment
we used the Euro-Pound Sterling (EUR/GBP) and Australian
Dollar-New Zealand Dollar (AUD/NZD) close prices. The
total number of price samples is about 1.4 and 1.9 million,
while no re-sampling was applied (every price corresponds
to the minute close price). The last 400k and 500k prices



Fig. 1. Proposed Method: First, the input is grouped into a number of groups g that are normalized together. Then, the grouped
observations are fed into the two proposed adaptive shifting and scaling layers. The output is then flattened and fed into the
employed DRL model, which is used to perform an action to the financial simulation environment and obtain the updated
observation.

were used for the evaluation, while the rest of them were used
for training. We used different number of samples from the
two pairs to evaluate and compare the proposed method in
different settings.

The employed DRL agent consists of three hidden fully
connected layers with 16 neurons and a final output layer with
1 output neuron for the critic and 3 output neurons for the ac-
tor. The PReLU activation function was used for the hidden
layers [17]. Also, note that the action selected at the previous
timestep is also fed to the network (by concatenating it with
the output of the first fully connected layer). Providing the in-
formation of the action performed at the previous step to the
network is crucial for performing profitable trades, since the
position held by the agent affects the commission to be paid.
The learning rate for the actor and critic was set to 10−4 and
3 · 10−4 respectively. Each agent receives 120 prices in the
input, while each simulation step leads to a forward move by
30 minutes. After an episode ends, both the actor and critic
are updated using the AdamW algorithm [18], while a total of
10 batch-based updates are performed between each episode.
The batch size was set to 32 for all the conducted experi-
ments, while eligibility traces were employed to calculate the
TD(λ) [19] (λ was set to 0.8, while the discount rate was set
to γ = 0.9 for all the conducted experiments). The penalty
for changing positions c was set to 2 ·10−6, while the rewards
were scaled by 104. Finally, to ensure that a good initializa-
tion is used for each of the employed agents, we performed
multiple initializations for each agent and we chose the one
that leads to the most balanced distribution between the avail-
able actions before initiating the training process [20].

For the proposed method we set the number of groups to
g = 4, with each group having a length of n = 30. The
learning rate was set to 10−10 and 10−8 for the two layers

of the proposed method, since we experimentally found out
that the proposed method leads to consistent gradients of quite
large magnitude. As a result, a smaller learning rate is needed
to ensure the smooth convergence of the resulting architec-
ture. The parameters matrices W1, for the adaptive shifting
layer, and W2, for the adaptive scaling layers, were initial-
ized as being the identity matrices. Furthermore, increasing
the proposed method’s complexity, i.e., increasing the number
of groups, did not lead to significant further improvements for
the agents.

Finally, for all the conducted experiments we employed
an ensemble of 7 agents, which ensures that a fair compari-
son is performed between the different evaluation approaches
(since seven different agents have been trained, reducing the
variance of the estimations). At the same time, the employed
ensemble-based strategy led to significant performance im-
provements over using single agents, as we also experimen-
tally demonstrate.

First, we evaluated five different baseline DRL agents
trained using a) percentage changes (i.e., every price pi in the
input was replaced with pi−pi−1

pi−1
), b) differences (i.e, every

price pi in the input was replaced with pi−pi−1), c) min-max
normalization, d) z-score standardization (i.e., subtracting the
mean and dividing by the standard deviation), as well as
e) Layer Normalization. The differences and percentage
changes were standardized to ensure that the values will be in
an appropriate range. To further validate the effectiveness of
the proposed method, we also compared the proposed method
to a CNN architecture that was also combined with different
normalization schemes. The employed CNN consisted of 8
filters with size of 3 and was followed by the same number of
fully connected layers as the proposed method.

The evaluation results are reported in Table 1, where the



PnL obtained by the ensemble agent that consists of the 7 in-
dividual agents is reported. Several interesting conclusions
can be drawn from the reported results. First, note that nor-
malization methods that do not lead to stationary features, i.e.,
min-max and standardization, collapse and do not allow for
learning profitable policies. On the other hand, using more
stationary handcrafted features, e.g., differences and percent-
age changes, leads to improved performance. The proposed
method leads to the overall best results, significantly improv-
ing the PnL of the final ensemble model, since PnL increases
by more than 150% and 20%, respectively, over the next best
performing method. Furthermore, note that despite using a
simpler MLP model, the proposed method performs better
than the more powerful CNN model. This interesting ob-
servation might mean that part of the over-parameterization
needed in modern DL architecture might actually be due to
insufficient normalization of the input data. Using adaptive
normalization structures allows for reducing the unecessary
complexity, while also improving the accuracy of the models.

Table 1. Evaluation results using two FOREX currency pairs
(EUR/GBP and AUD/NZD). The PnL of the ensemble model
(composed of 7 individual models) is reported.

Method EUR/GBP AUD/NZD

Min-Max (MLP) −0.946 −0.255
Min-Max (CNN) −0.003 −0.251
Standardization (MLP) −0.050 0.003
Standardization (CNN) −0.013 −0.006
Percentage Changes (MLP) 0.112 0.546
Percentage Changes (CNN) 0.194 0.568
Differences (MLP) 0.119 0.505
Differences (CNN) 0.066 0.399
Proposed 0.713 1.267

Finally, we performed an additional ablation study to eval-
uate the impact of grouping the input and learning the param-
eters of the proposed adaptive normalization layer along with
the rest of the model in an end-to-end fashion. We also in-
cluded Layer Normalization in this study to evaluate the effect
of learning a normalization scheme without applying any kind
of grouping. It is worth noting that we also employed Batch
Normalization [21] to normalize the raw input prices. How-
ever, this led to significantly worse results compared to Layer
Normalization. The results are reported in Table 2, while the
PnL curve on the EUR/GBP pair is provided in Figure 2. In-
deed, as it is demonstrated, both training the parameters of the
proposed method, as well as applying the proposed grouping
operation, always leads to a more profitable policy, increasing
both the individual agents’ PnL, as well as ensemble model’s
PnL.

Table 2. Ablation study (comparing the effect of grouping
and learning the parameters of the proposed method).

EUR/GBP

Method Indv. PnL Ensemble PnL

Layer Normalization −0.286± 0.318 0.274
Proposed (no train) 0.124± 0.150 0.544
Proposed 0.206± 0.175 0.713

AUD/NZD

Method Indv. PnL Ensemble PnL

Layer Normalization 0.363± 0.501 1.015
Proposed (no train) 0.377± 0.195 1.098
Proposed 0.572± 0.207 1.267

“Layer Normalization” does not employ any kind of grouping, while
“Proposed (no train)” just use the proposed normalization scheme
without any end-to-end learning. Both the individual agent’s PnL, as
well the PnL of the ensemble model are reported.

Fig. 2. Comparison of the obtained PnL (EUR/GBP pair).

4. CONCLUSIONS

In this work we presented a deep adaptive input normaliza-
tion approach specifically designed for training DRL agents
for financial trading using the raw input price as input. The
proposed approach employs two trainable neural layers which
can adaptively normalize the input by a) identifying the dis-
tribution from which the data were sampled, as well as b)
using a group-based approach that can better capture the
fine variations in the price. As we demonstrated through the
conducted experiments on two FOREX pairs using the PPO
algorithm, the proposed method performs better than other
well-established input pre-processing methods, including one
trainable normalization approach, validating the main hy-
pothesis examined in this paper, i.e., using an appropriately-
designed trainable normalization scheme leads to improved
performance on trading tasks using DRL agents.
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