
PSEUDO-ACTIVE VISION FOR IMPROVING DEEP VISUAL PERCEPTION THROUGH
NEURAL SENSORY REFINEMENT

Nikolaos Passalis and Anastasios Tefas

Dept. of Informatics, Aristotle University of Thessaloniki, Greece
Email: {passalis, tefas}@csd.auth.gr

ABSTRACT

Active vision approaches hold the credentials for improv-
ing the accuracy of Deep Learning (DL) models for many
challenging visual analysis tasks and varying environmental
conditions. However, active vision approaches are typically
closely tied to the underlying hardware, slowing down their
adoption, while they typically increase the latency of percep-
tion systems, since sensory data must be recaptured. In this
work, we propose a pseudo-active data refinement method
that works by appropriately refining the sensory input, with-
out having to reacquire the sensor data through traditional
camera control approaches. The proposed method is fully
differentiable and can be trained for the task at hand in an
end-to-end fashion, while it can be directly deployed in a
wide variety of systems, tasks and conditions. The effective-
ness and robustness of the proposed method is demonstrated
across a variety of tasks using two challenging datasets.

Index Terms— Active Perception, Active Vision, Visual
Perception, Deep Learning, Robotic Perception

1. INTRODUCTION

Deep Learning (DL) led to remarkable performance in many
challenging computer vision tasks [1]. However, despite its
success in such tasks, employing DL methods in real world
applications, that often have different requirements than sim-
ply training a model on a typical computer vision dataset,
pose significant challenges. For example, robotics typically
require visual perception algorithms that can handle tempo-
ral and spatial embodiment [2], while also providing active
perception capabilities [3], none of which is currently fully
addressed by existing DL approaches to a satisfactory degree.

This paper focuses on active vision that allows for appro-
priately controlling the camera of a perception system in or-
der to improve the perception accuracy [3]. It is worth noting
that a camera can be controlled both regarding its external pa-
rameters, e.g., pan and tilt, as well as some of its internal pa-
rameters, e.g., exposure and color profile, etc. Even through
there is an increasing amount of literature for handling the for-
mer [4, 5, 6, 7, 8], less focus has been given to the latter (with
respect to the performance of DL models). Indeed, most DL

algorithms implicitly assume that the heavy pre-processing
that is involved most digital camera sensors, e.g., color con-
stancy algorithms [9, 10, 11, 12], will mitigate the effect of
varying illumination conditions. As a result, most DL mod-
els do not explicitly deal with these effects. However, as we
experimentally demonstrate in this paper, DL models are es-
pecially prone to both varying illumination conditions, as well
as changes in contrast, brightness, and slight color shifts. This
is not a surprising finding, since adversarial attacks, as well as
studies of the effect of color shifts on the accuracy of DL mod-
els, have indeed demonstrated the vulnerability of DL models
to such transformations [13, 14].

Apart from distribution shifts that arise from the environ-
mental factor described above, using different hardware for
the deployment can also reduce the visual perception accu-
racy, if the sensors are not adequately calibrated. The typical
solution to this problem is to manually tune the hardware, as
well as employ the appropriate software pre-processing mod-
ules in order to ensure that the models will perform as ex-
pected. However, it is obvious that this process requires a sig-
nificant amount of effort, often slowing down the integration
in many real robotics applications.

Active perception algorithms can be employed to tackle
the aforementioned challenges, i.e., to appropriately control
the internal camera parameters in order to maximize percep-
tion accuracy for a given DL model. This process has many
similarities with the visual perception systems developed in
many biological organisms, such as many mammals. In these
cases, different mechanisms exist for adjusting various pa-
rameters that affect the signal reaching to sensor cells, well
before propagating the information to the visual cortex. Per-
haps the most well-known example of such mechanism is the
adaptive response of the iris to different illuminations con-
ditions, altering the amount of light eventually reaching the
retina [15]. Despite their potential, active vision methods
come with two important drawbacks. First, they typically
lead to the (complete or partial) loss of (at least) one frame
acquired by the camera, which can negatively affect the la-
tency of the system. Second, such algorithms are not eas-
ily deployed, since the output of the active perception algo-
rithm must be first adequately translated in order to match
the underlying hardware of each system, i.e., to translate the
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Fig. 1. The proposed method is composed of three separate neural modules. Each one is responsible for learning how to apply
a different kind of image transformation in order to gradually refine the input image in order to maximize the accuracy of the
subsequent DL model.

model’s output to control signals.
To overcome these limitations in this work we propose

a pseudo-active sensory refinement method that works by
applying a number of neural transformation layers on the
sensor data. This allows for refining the sensory input, with-
out having to reacquire the sensor data. In contrast with
traditional image processing operations, such as histogram
equalization, contrast corrections, etc., the proposed method
is end-to-end trainable and formulated as a series of neural
layers. As a result, the proposed method can be fully inte-
grated in DL end-to-end training pipelines. However, at the
same time, it provides significant advantages, since a) it can
be directly used with any DL model, without requiring any
model-specific training or any platform-specific adjustments,
b) it does not require support by the underlying hardware, and
c) it allows for avoiding the need to reacquire a new frame
for processing by the employed DL model. As a result, the
proposed method provides a solid step towards developing
practical and powerful tools that can be directly deployed in
a wide variety of systems, tasks and conditions, increasing
the perception accuracy. Indeed, we demonstrate the effec-
tiveness of the proposed method using two different tasks
and datasets, i.e., image recognition on ImageNet dataset
(ILSVRC 2012) [16] and object detection on PASCAL VOC
2007 dataset [17].

The rest of the paper is structured as follows. First, we in-
troduce the proposed method in Section 2. Then, we provide
the experimental evaluation in Section 3. Finally, conclusions
are drawn in Section 4.

2. PROPOSED METHOD

Let x ∈ RW×H×C be an input image, where W,H and C de-
note its width, height and number of channels respectively.
Typically, the input image x is fed into a DL model f(x)
in order to perform visual information analysis, e.g., object
recognition. The proposed method works by employing a se-
ries of neural transformation layers, as shown in Fig. 1, before

feeding the input into the DL model. The proposed method is
composed of three separate modules, each one performing a
different learnable transformation on the input. Each of these
modules operate on a dynamic differentiable color histogram
compiled through the previous stage. Therefore, during the
first stage, the image is globally shifted and scaled according
to the input histogram. Then, the second stage performs the
same transformation, but on channel level. These two mod-
ules combined aim at correcting global and per color channel
brightness and contrast. Then, the third module is responsible
for refining local regions of the input image, while also taking
into account its global histogram, in order to recover informa-
tion that is potentially lost during image acquisition, e.g., due
to over-exposure.

More specifically, the proposed method works as follows.
First, we compile a differentialable histogram with adaptive
bins using a Neural Bag-of-Feature-based formulation [18].
To this end, we quantize the input image features [x]ij ∈ RC

using a codebook V = [v1; . . . ;vNK
]T ∈ RNK×C as:

h =
1

WH

W∑
i=1

H∑
j=1

uij ∈ RNK (1)

where NK is the number of codewords, while the similarity
vector uij for the codewords vk and the input features xij is
calculated as

[uij ]k = sigm(vT
k xij), (2)

where sigm(·) ∈ (0, 1) denotes the sigmoid function. Three
different histograms are compiled, as shown in Fig. 1: a) one
at the input (h1), b) one at the output of the first module (h2)
and c) one at the end of the second module (h3). Note that
the first histogram operate on the averaged color intensities,
i.e., C = 1, instead of separate color channels, since its aim
is to capture the global information regarding the brightness
distribution in the image.

After compiling the first histogram, the proposed method
employs two linear layers to appropriately shift and scale the
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Table 1. Object recognition evaluation (recognition accuracy (%) is reported) on ImageNet dataset (ILSVRC 2012)
Method Transformation top-1 top-5
Baseline No 69.76 89.08
Baseline Contrast (+) 62.18 83.94
Hist. Equalization Contrast (+) 54.69 77.74
Autocontrast Contrast (+) 62.18 83.93
Proposed Contrast (+) 63.43 84.95
Baseline Contrast (++) 57.49 80.23
Hist. Equalization Contrast (++) 50.00 73.48
Autocontrast Contrast (++) 57.47 80.23
Proposed Contrast (++) 59.23 81.78
Baseline Brightness (+) 64.55 85.92
Autocontrast Brightness (+) 66.81 87.26
Proposed Brightness (+) 67.03 87.35
Baseline Brightness(++) 60.09 82.48
Autocontrast Brightness(++) 64.10 85.14
Proposed Brightness(++) 64.31 85.38

Method Transformation top-1 top-5
Baseline Brightness(-) 60.52 82.64
Autocontrast Brightness(-) 61.02 82.99
Proposed Brightness(-) 61.67 83.58
Baseline Brightness(–) 53.13 76.38
Autocontrast Brightness(–) 53.78 77.15
Proposed Brightness(–) 54.78 78.01
Baseline Hue (+) 62.11 84.38
Autocontrast Hue (+) 62.17 84.39
Proposed Hue (+) 62.37 84.70
Baseline Hue (-) 62.63 85.02
Autocontrast Hue (-) 62.69 85.05
Proposed Hue (-) 63.41 85.46
Baseline Combined 55.31 78.35
Autocontrast Combined 55.17 78.23
Proposed Combined 55.60 78.80

input:
x′ = (x− hT

1 W11)/(1 + hT
1 W12), (3)

where W11 ∈ RNK×1 denotes the weights of the shifting
sub-layer and W12 ∈ RNK×1 denotes the weights of the
scaling sub-layer. Then, this process is repeated in the sec-
ond module, but the shifting and scaling is now applied per-
channel:

[x′′]ijk = ([x′]ijk − [hT
2 W21]k)/(1 + [hT

2 W22]k), (4)

where W21 ∈ RNK×C denotes the weights of the shifting
sub-layer and W22 ∈ RNK×C denotes the weights of the
scaling sub-layer.

Finally, the third module works by first projecting the
third histogram into a lower dimensional space:

hx = tanh(hT
3 Wp) ∈ RNP (5)

where Wp ∈ RNK×NP and tanh(·) denotes the hyperbolic
tangent function. Then, the vector hx is upsampled into a
W×H×NP tensor and concatenated (channel-wise) with the
output of the previous layer to form the xp ∈ RW×H×(C+NP )

tensor. The output of the final layer is then calculated as:

x′′′ = x′′ � (1 + tanh(g(xp))), (6)

where g(·) ∈ RW×H×(C) is a series of convolution and de-
convolution layers and � denotes the Hadamard (element-
wise) product between two tensors. In this work we use two
5×5 convolution layers with 16 and 8 filters, followed by two
symmetric deconvolution layers (the last layer has C filters).
The tanh(·) non-linearity is used for all the layers. Note that
we assumed that the input is already normalized into a spe-
cific (limited) range. If this assumption does not hold, then
the output of the last layer must be also scaled using a train-
able parameter.

All the parameters of the proposed method are learned by
first employing an image transformation on the original image

x, e.g., brightness, contrast or hue adjustment, leading to a
corrupted image x̃. Then, all the layers are trained using the
back-propagation algorithm in order to recover the original
image to the output of the proposed sequence of neural layers,
denoted by h(·), by minimizing the following loss function:

L =
1

WHC

W∑
i=1

H∑
j=1

C∑
k=1

([x′′′]ijk − [x]ijk)
2, (7)

where x′′′ = h(x̃).

3. EXPERIMENTAL EVALUATION

The proposed method was first extensively evaluated on the
ImageNet dataset (ILSVRC 2012) [16] using an image recog-
nition setup and a ResNet-18 architecture [19]. The proposed
method was trained on the ImageNet dataset using the Adam
optimizer [20]. The proposed model was trained for 10,000
iterations with a learning rate of 0.001, followed by 2,000 it-
erations with a reduced learning of 0.0001. The batch size
was set to 32, while the number of codewords was set to
NK = 100 and the number of projection dimensions for
the last layer to NP = 8. The proposed method was also
compared to a) directly using the trained ResNet-18 architec-
ture (denoted as “Baseline”) with the default normalization
scheme (global standardization), b) employing a histogram
equalization approach (denoted as “Hist. Equalization”) and
c) maximizing the contrast (denoted as “Autocontrast”).

We also used different approaches to deteriorate the orig-
inal images: a) increasing the contrast by 30% (+) and 40%
(++), b) increasing (+/++) or decreasing (-/–) the brightness
by 30% and 40% respectively, c) increasing (+) or decreasing
(-) the hue by 10%. Also, we evaluated the methods in a more
challenging combined setup where the contrast was increased
by 20%, brightness was decreased by 20% and hue was in-
creased by 5%. The proposed model was trained by randomly
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Table 2. Ablation study on the ImageNet dataset using the
contrast (++) transformation (%)

Method top-1 top-5
Baseline 57.49 80.23
Module 1 58.22 80.87
Module 1 + 2 58.42 80.99
Module 1 + 2 + 3 59.23 81.78

selecting one transformation and then recovering the original
image.

The experimental results for the ImageNet dataset are
reported in Table 1. Several interesting conclusions can
be drawn from the reported results. First, note that all the
applied transformations, i.e., increasing the contrast, increas-
ing/reducing the brightness, increasing/decreasing the hue,
and/or combining multiple transformations on the input im-
age, lead to a significant reduction in recognition accuracy.
For example, even a mild shift in the hue by 10% leads to
a reduction in top-1 accuracy from 69.76% to 62.11%. At
the same time, employing non-linear histogram equalization
does not improve the recognition accuracy. In contrast, this
type of image enhancement actually reduces the recognition
accuracy, possibly by introducing a catastrophic distribution
shift. Similar results were observed for the rest of transfor-
mations as well, but omitted from Table 1, due to lack of
space. On the other hand, maximizing the contrast in the
input image can lead to improved recognition accuracy in
virtually all the evaluated cases. Employing the proposed
method can further improve the recognition results, by being
able to learn how to appropriately refine the original images
in order to compile new transformed images that would be
appropriate for the DL model at hand. It is worth noting that
for some cases, e.g., for contrast transformations, using the
proposed method can improve the top-1 recognition by over
3% (relative improvement). Furthermore, in order to evalu-
ate the effect of the three different modules that are used by
the proposed method, we also performed an ablation study,
where each of these modules was separately evaluated. The
experimental results are reported in Table 2, where we can
observe that each of the employed modules further increases
the recognition accuracy.

To further demonstrate the generality of the proposed
method, we conducted additional experiments for one other
task, i.e., object detection. To this end, we employed the
Single Shot MultiBox Detector (SSD) [21], with a MobileNet
backbone [22] for object detection. The proposed method was
not trained on the corresponding detection dataset. Instead,
we directly employed the model trained on the ImageNet
dataset for a recognition task in order to evaluate how it
generalizes on this related task. The experimental results
are reported in Table 3. Indeed, using the proposed method
again improves the perception accuracy over the evaluated
baselines. Quite interestingly maximizing the contrast does

Table 3. Evaluation on the VOC2007 (object detection)
dataset (%)

VOC2007
Method Transform. mAP
Baseline - 75.51
Baseline Contrast (+) 62.24
Autocontrast Contrast (+) 62.13
Proposed Contrast (+) 63.19
Baseline Contrast (++) 66.95
Autocontrast Contrast (++) 66.86
Proposed Contrast (++) 67.44
Baseline Brightness (++) 70.30
Autocontrast Brightness (++) 71.36
Proposed Brightness (++) 71.45
Baseline Brightness (–) 56.84
Autocontrast Brightness (–) 55.81
Proposed Brightness (–) 56.85
Baseline Combined 56.64
Autocontrast Combined 56.39
Proposed Combined 57.29

not work so well for this task, while the proposed method
still leads to impressive improvements (e.g., the mean Aver-
age Precision (mAP) increases by over 1.5% in some cases).
These results highlight the ability of the proposed method to
be directly employed and combined with virtually any DL
model and further increase its robustness by providing an
efficient pseudo-active vision approach.

4. CONCLUSIONS

In this work we presented a pseudo-active sensory refine-
ment method that works by applying a number of neural
transformation layers on the input, allowing for efficiently
refining the sensory input, without having to re-acquire the
sensor data. The proposed method is fully differentiable and
can be trained for the task at hand in an end-to-end fash-
ion. Furthermore, as demonstrated through the conducted
experiments, the proposed method can perform well across a
variety of tasks. In this way, it provides a solid step towards
providing powerful tools that can be directly deployed in a
wide variety of systems, tasks and conditions, increasing the
perception accuracy, paving the way for developing more ad-
vanced active vision approaches for manipulating the camera
parameters.
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