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Abstract Trading Strategies are constantly being employed in the financial markets in order to increase
consistency, reduce human errors of judgement and boost the probability of taking profitable market
positions. In this work we attempt to transfer the knowledge of several different types of trading strategies
to Deep Learning models. The trading strategies are applied on price data of Foreign Exchange (FOREX)
trading pairs and are actual strategies used in production trading environments. Along with our approach
to transfer the strategy knowledge, we introduce a preprocessing method of the original price candles
making it suitable for use with Neural Networks. Our results suggest that the Deep Models that are
tested perform better than simpler models and they can accurately learn a variety trading strategy.

Keywords Trading Strategy · LSTM · RNN · Deep Learning

1 Introduction

Financial Exchanges are considered to be all the licensed hubs where financial institutes, investors and
other entities submit their demands to buy or sell financial assets and speculate on their future values,
among other financial activities. The most important function of financial markets is to efficiently allocate
capital to businesses so they can expand their activities. Investors that place their investment in successful
companies can have those investments increase in value as the stock price of said companies rise. The
price of an asset is determined by the price investors are willing to pay for it at the time. Since this way
of pricing can be volatile, the price of assets usually fluctuate through time.

Another activity happening in the Financial Markets is the speculation of the true price of assets.
Seasoned investors can, at their own discretion, take advantage of price fluctuations to profit. Financial
firms such as hedge funds employ discretionary traders who use quantitative and qualitative analysis of
price movements to decide where to invest capital. Humans undertaking such tasks, have the disadvantage
that an individual’s sentiment may greatly affect their judgement and thus the efficacy and consistency
of their trading behaviour.

Even though humans are not always suitable for the task, the quantitative methods they use have met
great success in the past with firms having considerable profits from utilizing them [10, 15]. Due to the
success of quantitative methods such as technical analysis and since they are relatively formulaic many
of them were implemented as automated computer programs. The trading algorithms that emerged from
this process were more consistent, a great deal faster than humans and their judgement was always the
same, independent of any factors other than the quantitative measurements of the traded asset.

Another method of making investment decisions that has gained a lot of attention is utilizing machine
learning. The existing literature on the subject is mainly focused on the discovery of preexisting patterns
in time-series which can be taken advantage of for profit. One method for utilizing machine learning
methods in trading is the direct regression of the price time-series of an asset. Approaches such as [18],
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attempt to directly regress the future price or cashflows of a company that can then be used to derive
trading decisions. Other types of regression has also been explored in the form of prediction of known
patterns that arise from the price movements [17, 5, 1, 32].

In [19], an ensemble of machine learning methods, including Neural Networks, is used to predict
exchange rate fluctuations. The task is framed as a classification problem for each of the different machine
learning models, trained to predict the direction of multiple Foreign Exchange (FOREX) currencies. The
prediction of each model is augmented by the correlations across currency pairs. Finally the signals are
aggregated to form the final prediction that are used to modify a FOREX portfolio position.

The aformentioned work [19] and other similar research [28, 26] attempt to predict the price direction
in a supervised setting by training their models to predict a handcrafted set of best-case targets that
can be profitable if predicted correctly. This is often not the case since the labels are constructed from
observing the future behaviour of the price time-series, which might not be correlated with the available
information provided as input to the models trying to learn them.

One approach to avoid creating handcrafted labels is the use of Reinforcement Learning. Many of
the latest successes of Deep Learning applications such as [13, 22] utilize Deep Reinforcement Learning
(DRL), where agents can perform decision making in simulated environments such as video and board
games. DRL techniques have managed to train agents to the point that their performance can surpass
human agents participating in the same environments.

In [2], DRL is applied to financial trading, with an agent that is trained to automatically perform
trading decisions on several types of financial products. This approach directly encodes the Profit and
Loss (PNL) to a reward function that is used to train the agent. Thus the agent develops its own trading
strategy through training in order to achieve profit, without any straightforward method to directly steer
the decisions of the agents towards a specific behaviour.

In this work, we attempt to transfer the knowledge of real trading strategies used in production
trading to a Deep Learning model. Our method enables training Deep Learning models to replicate
trading signals emitted without utilizing any prior knowledge about the source of the signals or the
details of their calculation. This would allow replicating trading signals from sources that are not always
available such as successful human traders who can’t work through the night or may retire. Another
aspect of trading signals is that they are crisp decisions of buying or selling an asset. On the other hand
if a Deep Learning model such as a Neural Network learns to replicate the trading signals of an unknown
source it can provide a probability distribution across the decision choices. This allows the trading signals
from the Neural Network model to be included in fuzzy decisions processes. To the best of our knowledge
this is the first work that attempts to transfer the knowledge of real algorithmic trading strategies to
Neural Network models.

The outline of the paper is as follows. In Section 2, technical analysis is explained and examples of
technical indicators are given with ways to apply them for generating trading signals. In Section 3, we
present the methods used to generate our training data and the models that were compared. In Section
4, the experimental setup is described and the results are discussed. Finally, in Section 5, conclusions are
drawn and future work is suggested.

2 Trading Signals

The activity taking place on the financial markets consists of many participants that utilize information
to take actions on the markets. This information may consist on qualitative information, such as the
sentiment of the news articles surrounding a company, or rely on quantitative attributes of an asset’s price
movements [11]. Utilizing data produced by the trading activity taking place in the financial markets is
based on the hypothesis that such data contains quantifiable events and patterns [7, 30], that can be
taken advantage of when making investment decisions.

The agents who try to determine such patterns and take executive decisions when investing their
assets have a wide range of tools at their disposal. Sometimes the detection of aforementioned patterns
is done by personal intuition from people who have spent many years examining the markets, who claim
that experience alone is enough, while others utilize technical analysis of asset price charts to decide
their positions.

All participants in the trading activity have their own methods to parse and digest the information
of the financial markets and decide on their investment strategies. The resulting decision of a trading
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strategy, whether it comes from purely human-made decision or by strict algorithmic processing, can
be considered as one or multiple trading signals to buy or sell a specific asset. More formally, a trading
signal yt is an indication given by a trading strategy g at time t to either buy or sell a specific asset.

2.1 Technical Analysis Methods

In this work, quantitative methods are used as the source of learned trading signals, but the presented
methods can be applied on any source of signals, as long as the information that was taken into consid-
eration to produce them is contained within the provided input to the model.

Technical Analysis (TA) has been used for many decades as tool for generating trading signals with
varying levels of success. Many authors criticise the use of TA as it violates the strong version of the
efficient market hypothesis [12], while others advise it should be taken into consideration in conjunction
with external market knowledge [24].

The popularity of TA, has given rise to cases of “herding” [4] where the majority of investors seeking
short-term profit rely on the TA signals [24], causing significant volatility on traded assets [3, 21, 20].
Although TA might not seem a valid method of taking decisions by people strictly applying fundamental
analysis, the fact that so many people use it to inform their trading decisions ends up impacting the
markets. The resulting price movements may end up confirming the original TA predictions as a “self-
fulfilling prophecy”.

Trading strategies derived from TA, usually consist of a rule based system applied on technical
indicators. Technical indicators are the various filters applied on market data, that are then used to
carry out some form of technical analysis. The two most common technical indicators are:

2.1.1 Simple Moving Average (SMA)

One of the most elementary technical indicators is the Simple Moving Average [14]. It is calculated by
averaging the price of the past price samples. The price samples used are usually the close prices of the
Open-High-Low-Close (OHLC) tick subsampling technique, which is used to produce the OHLC candles.
The number of past price samples averaged is a parameter that can be changed.

SMAn(t) =

∑t−n+1
i=t pi
n

=
(pt + pt−1 + · · ·+ pt−n+1)

n

(1)

where pt is the subsampled close price at time t and n is the window size of the calculated SMA.

2.1.2 Relative Strength Index (RSI)

The Relative Strength Index is typically referred to as an oscillator for determining if assets are “over-
bought” or “over-sold” [14]. In essence it measures the relative upwards to downwards movements of an
asset’s price in the value range of 0 to 100.

U(t) =

{
pt − pt−1, if pt > pt−1

0, otherwise
(2)

D(t) =

{
pt−1 − pt, if pt < pt−1

0, otherwise
(3)

where U(t) and D(t) are the conditional return measures for each time-step t. To calculate the RSI, the
RS measure is first calculated,

RSn(t) =

∑t−n+1
i=t U(i)∑t−n+1
i=t D(i)

(4)
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Fig. 1: Example of technical indicators SMA100 and RSI20 along the close price of the EUR/USD FOREX
pair.

which follows the windowed average logic similar to the SMA calculation. Finally the RS measure is
bounded to a 0-100 value resulting in the Relative Strength Index (RSI).

RSIn(t) = 100−
100

1 + RSn(t)
(5)

2.2 Trading Techniques

A rough categorisation of the trading “styles” that certain strategies exhibit are as follows:

1. Trend Following which attempts, by using a momentum measure, to take action when a trend is
detected and follow it until it concludes, thus gaining a profit while the trend lasts.

2. Mean Reversion which attempts to trade with the short-term logic that some asset prices do not
diverge far from their mean, thus trying to achieve multiple small gains by from the price movements
around that mean.

Different assets call for different styles of strategies, for instance stocks usually exhibit trend patterns
which means that trend following strategies may be more suitable, while Foreign Exchange currencies
tend to have a behaviour better suited for mean reversion strategies. Although there are many other
types of trading using technical analysis, (namely breakout trading, retracement, etc.) their definition
and explanation are not related to the context of this work and the above types are only presented as a
simple example to help the reader understand how trading signals can be generated from such strategies.

The simplest form of trading strategy using indicators such as the SMA and RSI is a rule based
approach of setting specific “trigger” ranges for each of their values. When an indicator moves into such
a “trigger” range a specific trading signal is emitted. This can be either automatically fed into a trading
engine to execute the emitted signal or to simply alert a human trader about it and suggest an action.

For example, a very common signal for a trend following strategy is the 200-day SMA, where the
signal to buy is when the price surpasses the last SMA value and the signal to sell is when the price falls
below the last SMA value [14]. The range parameter of the SMA that is chosen to be 200 is not based
on strongly supported research but only because it’s a commonly used example.

On the opposite side of the spectrum, a mean reverting method using RSI is to sell an asset when the
RSI surpasses 70 which is supposed to mean that the asset is “overbought” and to buy an asset when
the RSI dips below 30 which means the asset is “oversold”. Again the specific ranges for buying and
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selling are commonly used suggestion and, to the best of our knowledge, are not strongly supported by
evidence.

2.3 Strategy Signal Generation

In this work we attempt to transfer the price parsing capabilities of complex trading strategies that gener-

ate trading signals, to a machine learning model. Consider an input price time-series x = ~(x1, x2, . . . , xn)
of length n that describes the price of a financial asset as it is traded in the markets. Let g be an unknown
signal generator that given a price time-series x produces a signal yn.

g(x) = yn ∈ {−1, 0, 1} (6)

The output label {-1, 0, 1} represents the 3 possible outputs of the generator which stand for different
signals. When the generator emits -1 it refers to shorting or selling an asset, while 1 refers to buying an
asset. When 0 is emitted, then no trade action is advised.

The unknown signal generator might be an algorithmic trading strategy, or a human deciding what
assets to trade. The signal yn is the trading signal to be executed after the n-th step provided in the
time-series x of size n. The signal generator can produce signals for the whole time-series x by applying
it on a chronologically expanding subset of the time-series starting from the earliest time-step.

yi = g( ~(x1, x2, . . . , xi)), ∀i ∈ {2, 3, . . . , n} (7)

Thus we can annotate all the signals produced by generator g as the vector y = ~(y2, y3, . . . , yn).
For posterity we include an extra signal y1 to y so that the vectors y and x have aligned indices in a
chronologically consistent manner.

To approximate the signals produced by the generator, a probabilistic machine learning model f is
trained so that:

f(x) = P (g(x)|x) (8)

Other than strictly algorithmically defined trading strategies, the potential uses of this transfer of
knowledge may be applied to other sources of trading signals. One such source might be human traders
that base their trading actions on their own instinct in addition to chartist techniques.

In this work, the DL techniques of Long-Short Term Memory Recurrent Neural Networks (LSTM)
are applied to learn a generator of trading signal. The trading signals employed were sourced from actual
trading strategies applied in the currency exchange markets by SpeedLab A.G, which is the affiliated
financial management company in this work.

3 Strategy Knowledge Transfer

In this Section a proposed set of stationary time-series features are described. These features greatly
improve the performance of Deep Learning models as it will be shown in Section 4. The proposed LSTM
model architecture is presented along with the deep learning techniques that are applied. A Convolutional
Neural Network (CNN) model architecture is also presented and its performance results are compared
to the LSTM model.

3.1 Features

First the data used to monitor the markets by chartists and technical analysis experts are defined. The
main method to parse all the trading activity into presentable price movements is the Open-High-Low-
Close subsampling method [16]. This method defines time-windows that sample 4 trade prices for all the
trades they encompass,

1. Open Price po(t): the price of the first trade in the window.
2. High Price ph(t): the highest price a trade was executed in the window
3. Low Price pl(t): the lowest price a trade was executed in the window
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4. Close Price pc(t): the price of the last trade in the window

Each window captures trades that have timestamps in the range (t− w + 1, t], where t is a moment
in time and w is the size of each window. Variables po(t), ph(t), pl(t) and pc(t) denote the subsampled
OHLC price of the window that ends at time t.

Machine learning models such as Artificial Neural Networks benefit when their inputs have similar
distributions to their activation function and when the input statistics are stationary. In the case of raw
price data neither is true so a a normalization scheme is required to remedy any potential problems. The
proposed features consist of the following deltas:

1. pc(t)− pc(t− 1)
2. ph(t)− ph(t− 1)
3. pl(t)− pl(t− 1)

4. log(ph(t))− log(pc(t))
5. log(pc(t))− log(pl(t))
6. log(pc(t))− log(pc(t− 1))

The delta pc(t) − pc(t − 1) is usually referred to as the return. The reason for choosing this set of
features is their stationary nature. Also many technical indicators utilize these kind of features internally
such the deltas between prices. For this work we will not examine the merit of each of these features
individually or whether additional features will improve performance, but focus on the ability of Deep
Learning models to learn the process a signal generator uses for producing its emitted signals.

The features introduced are normalized using standard normalization (standardization), which means
to shift the mean and standard deviation of the data to 0 and 1 respectively. In this case we only apply
the standard deviation shifting since our features are price deltas and shifting their mean would distort
the implied nature of zero valued price deltas. Also to avoid any problematic outliers before normalizing
we clip the values outside the 0.1 and 99.9 percentiles of each features’ probability distribution.

3.2 LSTM Model

A Recurrent Neural Network (RNN) is a type of Artificial Neural Network that exploits the concept
of time in the data by employing an internal memory module to keep track of events as they happen
and attempt to associate relevant parts of past inputs to future inputs. Because RNNs suffered of the
problems of vanishing gradients a popular solution was developed called the Long-Short Term Memory
RNNs that implemented a gating mechanism to protect the internal memory representations of the RNN
[8] from the decay due to unrelated inputs and gradients. The protected hidden activation is the “cell
state” which is regulated by said gates in the following manner:

ft = σ(Wxf · x + Whf · ht−1 + bf ) (9)

it = σ(Wxi · x + Whi · ht−1 + bi) (10)

c′t = tanh(Whc · ht−1 + Wxc · xt + bc) (11)

ct = ft � ct−1 + it � c′t (12)

ot = σ(Woc · ct + Woh · ht−1 + bo) (13)

ht = ot � σ(ct) (14)

where ft, it and ot are the activations of the input, forget and output gates at time-step t. These gates
control how much of the input and the previous state will be considered and how much of the cell
state will be included in the hidden activation of the network. The notation � denotes the element-wise
multiplication between vectors. The protected cell activation at time-step t is denoted by ct, whereas ht

is the activation that will be given to other components of the model. The matrices Wxf , Whf , Wxi,
Whi, Whc, Wxc, Woc, Woh are used to denote the weights connecting each of the activations with the
current time-step inputs and the previous time-step activations.

The LSTM model layer structure is sequential and consists of two LSTM layers and two Fully Con-
nected (FC) layers. The full model specification is described in Table 1. Batch Norm layers refer to
the Batch Normalization layer that were introduced in [9] helping reduce internal covariate shift during
training, by ensuring that the batch statistics of each layer stay the same throughout training. Dropout
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Table 1: LSTM model specification

Layer Type Layer Specification Activation

Input 600× 6 -
LSTM 6× 128 Tanh

Batch Norm 128 -
Dropout 40% -
LSTM 128× 128 Tanh

Batch Norm 128 -
Dropout 40% -

Fully Connected 32 PReLu
Fully Connected 3 Softmax

Table 2: CNN model specification. The Convolutional layers specification describe the filter size × number
of filters → causal time-series output

Layer Type Layer Specification Activation

Input 600× 6 -
Convolutional 16× 32→ 584 PReLU
Batch Norm 32× 584 -

Convolutional 16× 16→ 568 PReLU
Batch Norm 16× 568 -

Dropout 40% -
Convolutional 16× 16→ 552 PReLU
Batch Norm 16× 552 -

Convolutional 16× 8→ 536 PReLU
Batch Norm 8× 536 -

Dropout 40% -
Fully Connected 32 PReLu
Fully Connected 3 Softmax

is referring to the technique of randomly deactivating a percentage of activations, reduces neuron co-
adapation, thus slowing down overfitting [23]. Finally PReLu activation refers to the modified version of
Rectified Linear Unit that is introduced in [6].

Since our model is an LSTM and should receive time-series as input we use windows of size 300
time-steps with the 6 features described in Section 3.1 of each time-step. According to previous work
with LSTM [27] we avoid training for the first 100 time-steps since the recurrent network benefits from
first having a “burn-in” sequence before being forced to produce predictions. Consequently the model is
trained for the last 200 time-steps of each window.

The last 2 FC layers described in Table 1 are applied in a time distributed manner so that they
separately parse the output that the final LSTM layer emits at every time-step. To train the LSTM
network back-propagation through time [31] is employed to efficiently calculate the gradient value of
each parameter. The gradient values are supplied as inputs to the RMSProp algorithm [25] which decide
the training step of each parameter in the model that is being trained.

3.3 CNN Model

To compare our proposed approach with other Deep Learning methods, we also employ a Convolutional
Neural Network with causal padding to predict the same labels y as our LSTM model. Causal padding
is a proposed change to the padding applied to CNNs by [29] to align chronologically the inputs to the
outputs of a CNN model. Batch normalization and Dropout is also applied in the CNN model and we
use a total of 4 layers. The exact specification of the CNN model is described in Table 2.

Since we apply causal convolutions the activations are chronologically aligned with the input and
output. This allows for applying the final 2 FC layers of the CNN model similarly to the LSTM model’s
FC layers in a time distributed manner as described in Section 4.3. Multiple CNN variants were tested
by varying the parameters of filter sizes and number of filters.
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The training algorithm optimizer that was used, similarly to the LSTM, was RMSprop with learning
rate 1 × 10−3 and a scheduled decay is put in place that reduces the learning rate by 50% every 100
epochs.

3.4 Time-Series Processing

The two proposed models are capable of processing time-series in a slightly different way from each other.
For each model, a basic description is given to better present the details of their operation on time-series.

Initially the features described in Section 3.1 are extracted for each of the price time-series, resulting

in the feature vector x = ~(x1, x2, . . . , xn). For each feature, several time-series “chunks” or windows are
extracted to be used as samples during the stochastic optimization. Each extracted sample has a total of
300 steps with 6 feature values on each step. The 6 feature values are the ones described in Section 3.1.
Similarly to the features, we apply the algorithmic strategies’ logic to produce a label for each time-step

resulting in label vector y = ~(y2, y3, . . . , yn).
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Fig. 2: Time-series processing by the proposed models. Each model is given the feature time-series x
consisting of the 6 features described in Section 3.1 and processes it to produce the prediction of the
strategy’s label at each time-step. The Causal CNN is simplified with a shorter receptive field and less
layers, to avoid the clutter of illustrating numerous connections.

The LSTM model processes each time-step in a sample window sequentially. For every step the LSTM
takes, the FC layers receive the values of the LSTM hidden state and produce a prediction, as show in
Figure 2a. The prediction produced corresponds to the strategy label of that step.

The Causal CNN operates on multiple inputs at once combining past with present information into
each of the convolutional filters. As the input is propagated through the convolutional layers the field
the layers receive information from further in the past as is show in Figure 2b. In our experiments we
use four convolutional layers as shown in Table 2 and the causal convolution layers as shown in Table 2
have a wide receptive field of 16 total inputs being observable.

Both the LSTM and CNN models process the time-series information and extract some useful repre-
sentation from them. This representation is then given to a set of FC layers which produce a prediction
using a softmax output layer with three output neurones representing the three possible classes. The
available classes are the same as those the algorithmic strategies compute which are shown in Section
2.3. Thus the prediction of each of the proposed models can be directly compared to the labels the
algorithmic strategies assigned to each step and also be used to train said models using Stochastic
Optimization.
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Fig. 3: A Simple Moving Average crossover signals example. The top figures shows the labels produced
by the strategy overlaid on top of the close price of each 24 hour interval, while the bottom figures are
the two SMA values. Whenever the two SMA values on the bottom cross a buy or sell label is generated.
Moving averages used are a 200-step moving average and a 10-step moving average.

4 Experiments

In this section a description of the replicated strategies is given along with a data augmentation technique.
Next the training parameters are presented and the resulting performance of the compared models is
discussed.

4.1 Introductory Example

In order better explain our approach we present an example scenario of learning a widely accessible
open-source trading strategy. The strategy chosen follows the instructions we first present in Section 2.2,
namely the trend following strategy that triggers on a simple SMA crossing rule.

Given two SMA of the closing price time-series, one with a longer length window (e.g. 200 days) and
one SMA with a shorter window (e.g 10 days), we generate a buy signal whenever the shorter SMA
value crosses upwards the longer SMA value at time-step t. Conversely a sell signal is generated when
the shorter SMA value crosses the longer SMA downwards.

Trend Signal(t) =


−1, if SMA10(t) ≤ SMA200(t) and SMA10(t− 1) > SMA200(t− 1)

1, if SMA10(t) ≥ SMA200(t) and SMA10(t− 1) < SMA200(t− 1)

0, otherwise

(15)

,where SMA10(t) is the SMA of the close price with window size 10 at time-step t and SMA200(t) is
the the SMA with window size 200.

The resulting decisions of the strategy are illustrated in Figure 3 for currency pair EUR/USD and
EUR/GBP. This example strategy presented here is not making consistently profitable decisionstime-
step. The actual strategies examined in the next section for which the exact algorithm is not disclosed,
have a more complex set of signals and combine them to improve the deficiencies of this example strategy.

With this simple signal generator we can create labels for all the available price data which consist
of 28 foreign exchange currency pairs. Each time-step in the price time-series receives a label from this
sample trend strategy. Since the possible choices for each time-step are three, we can represent that using
three softmax output neurons on the neural network model of our choice.

Having generated all the labels for this strategy, we can then generate all the features described in
Section 3.1. Using the model described 1 with a single LSTM layer instead of two, the example crossover
strategy with parameters of 20 and 5 steps of moving averages is learned. Shorter averaging windows are
used to ensure enough signals are generated for the model to be properly trained. In the next section we
present a method to augment the data, so that enough samples, to train the deep models, are generated.
The performance of the trained LSTM on the described example strategy is shown in Table 3
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Table 3: Performance of single layer LSTM trained on example SMA crossover strategy with step sizes
20 and 5.

Train Test
Accuracy Precision Recall F1 Accuracy Precision Recall F1

0.998 0.992 0.99 0.991 0.994 0.972 0.974 0.973

Time Series Dataset

Train Test

Time direction

Train Test

Train Test

Split 1

Split 2

Split 3

Fig. 4: Walk Forward cross validation.

(a) Train accuracy (b) Test accuracy

Fig. 5: Mean accuracy metrics across validation splits during training. Each line corresponds to each
strategy as described in Section 4.2. (Best viewed in colour)

(a) Train F1 (b) Test F1

Fig. 6: Mean F1 metrics across validation splits during training. Each line corresponds to each strategy
as described in Section 4.2. (Best viewed in colour)
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Table 4: Mean performance metrics for each strategy of the model after training. Input features with the
label Proposed denote that the proposed features of Section 3.1 were used while the label OHLC denote
that raw OHLC values were used.

Strategy Input Features Model
Train Test

Accuracy Precision Recall F1 Accuracy Precision Recall F1

A
Proposed

LSTM 0.998 0.997 0.998 0.997 0.995 0.977 0.976 0.976
CNN 0.994 0.988 0.990 0.989 0.988 0.943 0.932 0.937

OHLC
LSTM 0.989 0.967 0.965 0.966 0.989 0.962 0.955 0.958
CNN 0.958 0.885 0.747 0.754 0.952 0.828 0.736 0.743

B
Proposed

LSTM 1.000 0.999 0.999 0.999 0.987 0.924 0.928 0.926
CNN 0.977 0.901 0.827 0.859 0.968 0.844 0.767 0.799

OHLC
LSTM 0.959 0.812 0.644 0.700 0.957 0.810 0.629 0.684
CNN 0.941 0.350 0.335 0.326 0.941 0.346 0.334 0.325

C
Proposed

LSTM 0.998 0.982 0.984 0.983 0.994 0.953 0.952 0.952
CNN 0.996 0.963 0.983 0.973 0.990 0.917 0.940 0.928

OHLC
LSTM 0.985 0.902 0.860 0.878 0.983 0.885 0.846 0.864
CNN 0.971 0.808 0.726 0.760 0.967 0.769 0.675 0.706

D
Proposed

LSTM 0.996 0.993 0.995 0.994 0.991 0.988 0.988 0.988
CNN 0.987 0.984 0.983 0.983 0.981 0.976 0.973 0.974

OHLC
LSTM 0.910 0.881 0.834 0.847 0.902 0.866 0.834 0.842
CNN 0.856 0.830 0.767 0.781 0.852 0.847 0.747 0.764

E
Proposed

LSTM 1.000 1.000 1.000 1.000 0.997 0.902 0.891 0.896
CNN 0.999 0.968 0.952 0.959 0.989 0.656 0.534 0.579

OHLC
LSTM 0.994 0.855 0.726 0.776 0.992 0.789 0.664 0.713
CNN 0.989 0.544 0.334 0.334 0.989 0.334 0.333 0.332

4.2 Source Strategies

The signal generators that we use to train the LSTM models originate from 5 individual strategies that
have been used as part of a production trading system at SpeedLab AG. Due to the competitive nature
of financial trading, we are unable to disclose the full definition of the strategies, but a brief description
of each strategy is provided.

1. Strategy A: Trend following strategy that can be adjusted for long or short term trends and provides
slow but deliberate signals.

2. Strategy B: Trend following strategy with trigger conditions of a breakout strategy.
3. Strategy C: Trend following strategy similar to strategy A but taking into consideration different

factors.
4. Strategy D: Breakout strategy that monitors abnormal events to emit signals.
5. Strategy E: Mean Reversion strategy monitoring for lack of trend and emit signals during lateral

market movements.

By training on a wide range of trading styles we ascertain that the learning results presented in this
Section can be applied to a variety of signal generators.

When training Deep Learning models, an important issue is the need of adequate amounts of data.
Unfortunately in our case, the parameterized strategies generate too few signals to have a reasonable
training sample for our DL model for each FOREX pair data. To resolve this issue, the training data
of each trading pair is augmented with an extra set of input features and labels. These supplemental
features and labels are extracted from the price time-series of different FOREX pairs that were rescaled
to fit the range of values of the originally trained FOREX pair. This means that if strategy A is being
trained on FOREX pair EUR/USD, that has a range of price values [1.02, 1.6], we rescale all other
FOREX pairs’ price time-series within that range and apply the signal generator we initially used for the
EUR/USD pair. Then the resulting features and labels are added to the training set of the EUR/USD
pair. The same process is applied to all the tested strategy-currency pairs that are evaluated.

The dataset consists of several FOREX trading pairs including AUD/CAD, AUD/CHF, EUR/USD,
EUR/AUD, GBP/USD, GBP/JPY and USD/CAD. The price data x is supplied to the generator strate-
gies that produce the signals y that will act as the labels our model will learn. Because of the differences in
market behaviour between currency pairs, not all strategies are suitable for all trading pairs. In this work
each strategy is used to generate trading signals for at least 3 FOREX pairs that would be considered
suitable for their behaviour.
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In total the data used consists of 28 FOREX trading pairs. For each pair the data available is from
2010 to 2018, with minute subsampling resolution totalling a bit over 80 million 1-minute OHLC candles.
For each 1-minute candle, 6 features were extracted as shown in Section 3.1 and labels were generated
by each strategy.

4.3 Training Specification

All the models are trained with RMSProp which is initialized with learning rate 1×10−3 and a scheduled
decay is put in place that reduces the learning rate by 50% every 100 epochs. In Figures 5 and 6 there
is a clear indication of the benefits of the learning rate decay that was employed every 100 epochs. Each
training step uses a batch size of 128 samples, large enough so that the batch normalization layers can
collect an accurate and consistent approximation of each layer’s activation statistics. Each experiment is
trained for 600 epochs.

To conduct cross validation we use the walk forward method, which consists of slicing the training
and test sets in a time consistent manner. To achieve this we consider the training and test set selection
as a sliding window on the chronologically sorted time-series. The training part of the selection is always
before the test part as shown in Figure 4 to avoid any advantage from using information from the future.

A separate training experiment is conducted for each of the strategies and each of the selected FOREX
pairs totalling |strategies| × |FOREX pairs| = 5× 3 = 15 experiments for each model and type of input
features. Each experiment consists of 3 walk forward splits as shown in Figure 4. We measure train and
test performance metrics, such as accuracy, precision, recall and F1, at the end of each training epoch.

The proposed LSTM model is able to learn and emit the correct signals in almost every situation.
The cases where the correct signal is not emitted are usually caused by samples lying extremely close to
the decision boundaries of the model. Such cases are very few as shown in the performance metrics in
Figures 5 and 6.

4.4 Performance Comparisons

As a comparison to the LSTM model architecture, a CNN model is also trained on the same data.
The CNN model’s performance metrics are included in Table 4. The CNN models presented manage to
perform very similarly to the LSTM on the training data, but does not maintain the same performance
on the test data. The results clearly indicate that across all strategies and input features, the LSTM
model is able to generalise better that the CNN model.

An observation that was made is that the accuracy metric on most of the strategies is nearly perfect,
even in the test dataset, whereas the rest of the metrics are not as close to perfect. This can be attributed
to the fact that the labels produced by some of the strategies are highly unbalanced, since some of them
are very selective when entering the market and emit too few buy or sell signals. The resulting bias might
not affect accuracy since it does not consider the different population of each class, but it does affect
the rest of our metrics which are averaged in an unweighted manner across classes. Still our proposed
models manage to perform well, overcoming this peculiarity in our data.

This leads to the conclusion that the proposed LSTM model is better suited for the task of copying
generated signals on such time-series. The CNN results presented in Table 4 are the best performing ones
of the CNN architectures that were tested. The major problem of larger CNNs was that overtraining
occurred even though both Batch Normalization and Dropout was used.

To validate the proposed features mentioned in Section 3.1, we compare the aforementioned CNN and
LSTM models, using as input the raw Open-High-Low-Close (OHLC) values. The OHLC are normalized
using standardization moving their mean and standard deviation to 0 and 1 respectively. The rest of
the model and training parameters remain unchanged. The resulting performances are shown in Table 4.
The proposed features perform better across all models and strategies, confirming that using this kind
of features yields better performance compared to the raw OHLC values.

There also seems to be a discrepancy among the learning of each strategy by the proposed models.
More specifically the metrics for learning Strategies B and E perform considerably worse that the rest.
This can also be attributed to the fact that they are two of the strategies that are more conservative in
entering the market and thus emitting less signals that can be used to train the proposed models.
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These results confirm our hypothesis that an LSTM can become a near-identical signal emitter that
copy some generator strategy. It is also shown that the LSTM models performs better than the CNN
models for cloning a signal generator in a time-series setting. Finally the proposed features are shown to
perform better for all models than the raw OHLC values for this task.

In many trading firms another source of information that is used is the published news articles, which
many traders take into consideration before trading. A future direction of this work would be to transfer
the trading signals emitted by a strategy that takes news into consideration, by also giving the same
news as input to the machine learning model.

5 Conclusion

In this work the knowledge from production strategies that emit trading signals is successfully transfers
to an LSTM model. Although in this instance the employed strategies can be algorithmically derived
from the OHLC price time-series, the presented model can be applied in cases where that is not true,
such as strategies directly generated by human traders. This can be useful for companies to ensure
that a successful trader’s behaviour can be simulated by such model to continue the same trading
activity if they becomes unavailable. The proposed model is compared to another Deep Learning model,
namely a Convolutional Neural Network (CNN) which it surpasses at all performance metrics. The
proposed features’ contribution to performance is tested by replacing them with the raw (but normalized)
OHLC values of the price time-series, which also reveals that the proposed features improve performance
significantly.
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