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Abstract

In this paper a Convolutional Neural Network framework for Content Based Im-

age Retrieval is proposed. We employ a deep CNN model to obtain the feature

representations from the activations of the deepest layers and we retrain the net-

work in order to produce more efficient image descriptors, relying on the available

information. Our method suggests three basic model retraining approaches. That

is, the Fully Unsupervised Retraining, if no information except from the dataset

itself is available, the Retraining with Relevance Information, if the labels of

the dataset are available, and the Relevance Feedback based Retraining, if feed-

back from users is available. We propose these approaches independently or in

a pipeline, where each retraining approach operates as a pretraining step to the

subsequent one. We also apply a query expansion method with spatial reranking

on top of these approaches in order to boost the retrieval performance. The exper-

imental evaluation on six publicly available image retrieval datasets indicates the

effectiveness of the proposed method in learning more efficient representations for

the retrieval task, outperforming other CNN-based retrieval techniques, as well as

conventional hand-crafted feature-based approaches.
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1. Introduction1

Information Retrieval (IR) refers to the process of obtaining material (text2

documents, images, audio etc.) that satisfies a certain information need from3

large databases [1]. Over the long history of IR, numerous works emerged in4

the field of text retrieval [2], audio [3], video [4], and image retrieval [5]. Image5

retrieval is a research area of IR of great scientific interest since 1970s. Earlier6

studies include manual annotation of images using keywords and searching by7

text [6]. Due to the difficulties of text-based image retrieval, deriving from the8

manual annotation of images, that is based on the subjective human perception,9

and the time and labor requirements of annotation, in 1990s Content Based Image10

Retrieval (CBIR) has been proposed [7].11

The objective of CBIR is to retrieve images that are relevant to a query image12

from a large collection based on their visual content [8]. A key issue concerning13

CBIR is to extract meaningful information from raw data in order to eliminate14

the so-called semantic-gap [9]. The semantic-gap refers to the difference between15

the low level representations of images and their higher level concepts. While16

earlier works focus on primitive features that describe the image content such17

as color, texture, and shape, numerous more recent works have been elaborated18

on the direction of finding semantically richer image representations. Among the19

most effective are those that use the Fisher Vector descriptors [10], Vector of20

Locally Aggregated Descriptors (VLAD) [11] or combine bag-of-words models [12]21

with local descriptors such as Scale-Invariant Feature Transform (SIFT) [13].22

Several recent studies introduce Deep Learning algorithms [14] against the23

shallow aforementioned approaches to a wide range of computer vision tasks,24

including image retrieval [15, 16, 17, 18]. The main reasons behind their success25

are the availability of large annotated datasets, and the GPUs computational26

power and affordability.27

Deep Convolutional Neural Networks (CNN), [19, 20], are considered the more28

efficient Deep Learning architecture for visual information analysis. CNNs com-29

prise of a number of convolutional and subsampling layers with non-linear neural30
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Figure 1: Overview of the CaffeNet Architecture

activations, followed by fully connected layers (an overview of the utilized net-31

work is provided in Fig. 1). That is, the input image is introduced to the neural32

network as a three dimensional tensor with dimensions (i.e., width and height)33

equal to the dimensions of the image and depth equal to the number of color34

channels (usually three in RGB images). Three dimensional filters are learned35

and applied in each layer where convolution is performed and the output is36

passed to the neurons of the next layer for non-linear transformation using ap-37

propriate activation functions. After multiple convolution layers and subsampling38

the structure of the deep architecture changes to fully connected layers and single39

dimensional signals. These activations are usually used as deep representations40

for classification, clustering or retrieval.41

Over the last few years, deep CNNs have been established as one of the42

most promising avenues of research in the computer vision area due to their43

outstanding performance in a series of vision recognition tasks, such as image44

classification [21, 22], face recognition [23, 24], digit recognition [25, 26], pose45

estimation [27], object and pedestrian detection [28, 29], and action recognition46

[30]. It has also been demonstrated that features extracted from the activation47

of a CNN trained in a fully supervised fashion on a large, fixed set of object48

recognition tasks can be re-purposed to novel generic recognition tasks, [31]. In-49

spired by these results, deep CNNs introduced in the vivid research area of CBIR.50

The primary approach of applying deep CNNs in the retrieval domain is to ex-51

tract the feature representations from a pretrained model by feeding images in52
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the input layer of the model and taking activation values usually drawn from the53

last layers, while several recent works are directed at utilizing the convolutional54

layers for the feature extraction. Current research also includes model retraining55

approaches, which are more relevant to our work, while other studies focus on56

the combination of the CNN descriptors with conventional descriptors like the57

VLAD representation. The existing related works are discussed in the following58

section.59

Our work investigates model retraining approaches in order to enhance the60

deep CNN descriptors. We employ a pretrained model to derive feature repre-61

sentations from the activations of the deepest layers and we retrain the model,62

exploiting the idea that a deep neural architecture can non-linearly distort the63

feature space in order to modify the feature representations, with respect to the64

available information. This information can consist in only the dataset to be65

searched, the labels of the dataset or of a part of the dataset, and finally infor-66

mation acquired from users’ feedback, that is, relevant or irrelevant images as67

deemed by multiple users.68

In this paper we propose a general framework for CNN model retraining in the69

retrieval domain. The contributions of our study can be summarized as follows:70

• To the best of our knowledge this is the first work that is able to exploit71

any kind of available information about the retrieval task. The proposed72

retraining approaches of our method can be categorized as follows:73

Fully Unsupervised Retraining (FU): if no information is available, except74

for the dataset itself.75

Retraining with Relevance Information (RRI): if the labels of the dataset or76

of a part of the dataset are available.77

Relevance Feedback-based Retraining (RF): if feedback from users is avail-78

able.79

• We deploy combinatory schemes, where all the above approaches can be80

employed in a pipeline. In this fashion each retraining approach operates81
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as a pretraining step to the subsequent one.82

• We suggest a query expansion technique with a spatial verification step83

applicable to all the above cases.84

• This is the first approach that uses retargeting for the learning phase, in-85

stead of triplet loss, allowing for single sample training which is very fast86

and can be easily parallelized and implemented in a distributed manner.87

In Fig. 2 we schematically describe the proposed framework.88

Dataset Users' Feedback

Labels

Fully Unsupervised

Retraining

Retraining with

Relevance Information

Relevance
Feedback based

Retraining

Spatial Veri cation

Query Expansion

Figure 2: The proposed retraining approaches of our method based on the available information

The remainder of the manuscript is structured as follows. Section 2 discusses89

prior work. The proposed framework is described in detail in Section 3. The pro-90

posed spatial verification and query expansion technique is presented in Section91

4. The experiments are provided in Section 5. Finally, conclusions are drawn in92

Section 6.93

2. Prior Work94

In this Section we present previous CNN-based works for image retrieval.95

Firstly, an evaluation of CNN features in various recognition tasks, including96

image retrieval that improve the baseline performance using spatial information97

is presented in [32]. In [33] an image retrieval method, where a CNN pretrained98

model is retrained on a different dataset with relevant image statistics and classes99

to the dataset considered at the test time and achieves improved performance, is100
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proposed. From a different viewpoint, in [34, 35], CNN activations at multiple101

scale levels are combined with the VLAD representation. In [36], a feature aggre-102

gation pipeline is presented using sum pooling. while in [37] a cross-dimensional103

weighting and aggregation of deep convolutional neural network layer output is104

proposed. An approach that produces compact feature vectors derived from the105

convolutional layer activations that encode several image regions is proposed in106

[38]. In [39], a three-stream Siamense network is proposed to optimize the weights107

of the so-called R-MAC representation, proposed in [38], for the retrieval task, us-108

ing a triplet ranking loss. The public Landmarks dataset, that is also used in [33],109

is utilized for the model training. In [40] a pipeline that uses the convolutional110

CNN-features and the bag-of-Words aggregation scheme is proposed. Finally, in111

[41], the bilinear CNN-based architectures [42] are introduced in the CBIR do-112

main where a bilinear root pooling is proposed to project the features extracted113

from the two parallel CNN models into a small dimension and the resulting model114

is trained on image retrieval datasets using unsupervised training.115

Subsequently, in [43] an online learning method to learn a similarity func-116

tion between heterogeneous data modalities by preserving relative similarity con-117

straints from two directions is proposed. In general, considerable research at-118

tention has been focused over the past few years on the cross-modal retrieval119

[44, 45], while another research direction in the retrieval domain, which has at-120

tracted intensive attention, concerns deep hashing-based techniques [46, 45, 47].121

Under the hashing view, where the goal is to map the data points into a Ham-122

ming space of binary codes preserving the similarity in the original space, in123

[48] a novel unsupervised hashing approach is proposed by integrating feature124

aggregating and hash function learning into a joint optimization framework. In125

[45] an end-to-end deep learning framework which can perform feature learning126

and hash-code learning simultaneously is proposed. Finally, in [46] a two stage127

hashing framework for cross-modal retrieval tasks which can work in multiple128

settings like single label, multi-label, and both paired and unpaired scenario, while129

preserving the structure and semantic relationships that exists within the data is130

proposed. We should note that the proposed approach can be combined with131
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deep hashing methods to increase the retrieval performance even more, which132

constitutes a main direction of our future work.133

A deep CNN is retrained with similarity learning objective function, consider-134

ing triplets of relevant and irrelevant instances obtained from the fully connected135

layers of the pretrained model, in [49]. A related approach has also been proposed136

in the face recognition task which, using a triplet-based loss function, achieves137

state-of-the-art performance, [50], while a relevant idea recently successfully in-138

troduced in the cross-modal retrieval domain [51]. These approaches are using139

triplet sample learning which is difficult to be implemented in large scale, and140

usually active learning is used in order to select meaningful triplets that can in-141

deed contribute to learning [50]. In our approach we extend these methodologies142

by considering multiple relevant and multiple irrelevant samples in the training143

procedure for each training sample. Additionally, we boost the training speed144

by defining representation targets for the training samples and regression on the145

hidden layers, instead of defining more complex loss functions that need three146

samples for each training step. That is, our approach uses single sample training147

allowing for very fast and distributed learning. Finally, the proposed method148

is also able to exploit the geometric structure of the data using unsupervised149

learning as well as to exploit the user’s feedback using relevance feedback.150

3. Proposed Method151

In this paper we propose a CNN model retraining framework for CBIR, capable152

of exploiting any kind of available information. The core idea is to utilize the153

ability of a deep CNN to modify its internal structure, in order to produce better154

image representations for the retrieval task.155

We utilize the BVLC Reference CaffeNet model1, which is an implementation156

of the AlexNet model trained on the ImageNet Large Scale Visual Recognition157

Challenge (ILSVRC) 2012 to classify 1.3 million images to 1,000 ImageNet classes,158

1https://github.com/BVLC/caffe/tree/master/models/bvlc_reference_caffenet
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[21]. The model consists of eight trained neural network layers; the first five159

are convolutional and the remaining three are fully connected. Max-pooling160

layers follow the first, second and fifth convolutional layers, while the ReLU non-161

linearity ( f (x) = max(0, x)) is applied to every convolutional and fully connected162

layer, except the last fully connected layer (denoted as FC8). The output of the163

FC8 layer is a distribution over 1,000 ImageNet classes. The softmax loss is used164

during the training. An overview of the CaffeNet architecture is provided in Fig.165

1.166

We employ the CaffeNet model to directly extract feature representations from167

a certain hidden layer. Since the representations obtained from a CNN model for168

a set of input images are adjustable by modifying the weights of the model, we169

retrain the parameters of the layer of interest relying on the available information.170

To this aim, we adapt the pretrained model by removing the layers following the171

layer utilized for the feature extraction, we build the target representations for172

each image, and subsequently we retrain the neural network.173

Based on the available information our method suggests three basic retraining174

approaches: The FU retraining, if no information is available, the RRI, in the case175

that the labels of the dataset are available, and the RF, if feedback from users is176

available. Each of them can be applied independently or in a pipeline, where each177

approach operates as a pretraining step to the following retraining process. The178

three basic proposed retraining approaches are presented in detail in the following179

subsection.180

3.1. Model Retraining Approaches181

3.1.1. Fully Unsupervised Retraining182

In the FU approach, we aim to amplify the primary retrieval presumption that183

the relevant images to a certain query are meant to be closer to the query in184

the feature space. The rationale behind this approach is rooted to the cluster185

hypothesis which states that documents in the same cluster are likely to satisfy186

the same information need [52]. That is, we retrain the pretrained CNN model187

on the given dataset, aiming at minimizing the squared distance between each188
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image representation and its n nearest representations. A schematic description189

is provided in Fig. 3.190

Figure 3: Schematic description of the Fully Unsupervised approach. © denote the neighbors of the

sample x, and µ the mean vector of the nearest neighbors of x

Let us denote by I = {Ii, i = 1, . . . ,N} the set of N images to be searched, and

by x = FL(I) the output of the L layer of the pretrained CNN model on an input

image I. Then we denote by X = {xi, i = 1, . . . ,N} the set of N feature represen-

tations emerged in the L layer. We compute the mean vector of the n nearest

representations to xi and we denote it by µi. The new target representations for

the images of I can be determined by solving the following optimization problem:

min
xi∈X
J = min

xi∈X

N∑
i=1

‖xi − µi‖
2
2, (1)

We solve the above optimization problem using gradient descent. The first-191

order gradient of the objective function J is given by:192

∂J

∂xi
=

∂

∂xi

 N∑
i=1

‖xi − µi‖
2
2


=

∂

∂xi
((xi − µi)ᵀ(xi − µi))

= 2(xi − µi),

(2)

Consequently, the update rule for the n-th iteration for each image can be

formulated as:

x(n+1)
i = x(n)

i − 2η(x(n)
i − µi), xi ∈ X (3)

where the parameter η ∈ [0, 0.5] controls the desired distance from the n nearest193

representations.194
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Using the above representations as targets in the layer of interest, we formu-195

late a regression task for the neural network, which is initialized on the CaffeNet’s196

weights and is trained on the utilized dataset, using back-propagation. The Eu-197

clidean loss is used during training for the regression task. Thus, the procedure198

is integrated by feeding the entire dataset into the input layer of the modified199

model and obtaining the new representations.200

3.1.2. Retraining with Relevance Information201

Samples Provided with Relevance Information. In this approach we propose to202

enhance the performance of the deep CNN descriptors exploiting the relevance203

information deriving from the available class labels. To achieve this goal, con-204

sidering a labeled representation (xi, yi), where xi is the image representation205

and yi is the corresponding image label, we adapt the deepest neural layers of206

the CNN model used for the feature extraction, aiming to minimize the squared207

distance between xi and the m nearest relevant representations, and simultane-208

ously to maximize the squared distance between xi and the n nearest irrelevant209

representations. A schematic description is provided in Fig. 4.210

Figure 4: Schematic description of the Supervised approach. ⊕ denotes a relevant image to the sample

x, while 	 denotes an irrelevant one. We indicate the mean vector of relevant images to x by µ+,

and the mean vector of irrelevant ones as µ−.

Let I = {Ii, i = 1, . . . ,N} be a set of N images of the search set provided with

relevance information, and x = FL(I) the output of the L layer of the pretrained

CNN model on an input image I. Then we denote by X = {xi, i = 1, . . . ,N} the set

of N feature representations emerged in the L layer, by Ri = {rk, k = 1, . . . ,Ki} the

set of Ki relevant representations of the i-th image and by Ci = {cl, l = 1, . . . , Li}
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the set of Li irrelevant representations. We compute the mean vector of the m

nearest representations of Ri to the certain image representation xi, and the mean

vector of the n nearest representations of Ci to xi, and we denote them by µi
+ and

µi
−, respectively. Then, the new target representations for the images of I can be

determined by solving the following optimization problems:

min
xi∈X
J+ = min

xi∈X

N∑
i=1

‖xi − µ
i
+‖

2
2, (4)

and

max
xi∈X
J− = max

xi∈X

N∑
i=1

‖xi − µ
i
−‖

2
2. (5)

We solve the above optimization problems using gradient descent.211

The update rules for the n-th iteration can be formulated as:

x(n+1)
i = x(n)

i − 2ζ(x(n)
i − µ

i
+), xi ∈ X (6)

and

x(n+1)
i = x(n)

i + 2β(x(n)
i − µ

i
−), xi ∈ X (7)

Consequently, the combinatory update rule, deriving by adding the equations

(6) and (7) can be formulated as:

x(n+1)
i = x(n)

i − (1 − β)(x(n)
i − µ

i
+) + β(x(n)

i − µ
i
−), xi ∈ X (8)

where the parameter β = 1 − ζ, ∈ [0, 1] controls the desired distance both from212

relevant and irrelevant representations. Plainly, β = 0 sets as target representation213

for each image the mean vector of its m relevant representations, while as β −→ 1214

the new target representations are more affected by the irrelevant contribution.215

Distractors. In the case where there are images in the dataset that do not be-216

long to a certain class and serve as distractors in the retrieval, we can introduce217

them to the model retraining procedure. Thus, granted that the distractors are218

close to the training samples, that is, their representations are among the n afore-219

mentioned irrelevant representations of each image, we concurrently retrain the220

pretrained model so that the squared distance between the distractor representa-221

tions and each certain image representation be maximized.222
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Denoting by D = {d j, j = 1, . . . , P} the set of feature representations of the P223

distractors gathered from all the training images, our goal for each corresponding224

distractor can be formulated as follows:225

max
d j∈D
J = max

d j∈D

P∑
j=1

‖d j − x j
i ‖

2
2. (9)

Consequently, following the gradient, the update rule for the n-th iteration for a

distractor image can be formulated as:

d(n+1)
j = d(n)

j + 2θ(d(n)
j − x j

i ), d j ∈ D (10)

where the parameter θ ∈ [0, 0.5] controls the desired distance from the certain226

image representation.227

Thus, as in the previous approach, using the above target representations we228

retrain the neural network on the images provided with relevance information229

and on distractors (if any) using back-propagation.230

3.1.3. Relevance Feedback Based Retraining231

The idea of this proposed approach is rooted in the relevance feedback phi-232

losophy. In general, relevance feedback refers to the ability of users to impart233

their judgement regarding the relevance of search results to the system. Then,234

the system can use this information to ameliorate its performance [53]. In this235

proposed retraining approach we consider information from different users’ feed-236

back. This information consists of queries and relevant and irrelevant images237

to these queries. Then, our goal is to modify the model parameters in order to238

bring the relevant images closer to the specific query and move away from it the239

irrelevant ones. Towards this end, we retrain the pretrained model by training on240

relevant and irrelevant images so that the corresponding relevant representations241

come closer in terms of Euclidean distance to the query representation, while the242

irrelevant ones move further away. We provide a schematic description in Fig. 5.243
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Figure 5: Schematic description of the Relevance Feedback based approach. ⊕ denote the relevant

images to the query q, while 	 denote the irrelevant ones, as they are given by the users

Let us denote by Q = {Qk, k = 1, . . . ,K} a set of queries, Ik
+ = {Ii, i = 1, . . . ,Nk}244

a set of relevant images to a certain query, by Ik
− = {I j, j = 1, . . . ,Mk} a set of245

irrelevant images, by x = FL(I) the output of the L layer of the pretrained CNN246

model on an input image I, and by q = FL(Q) the output of the L layer on a247

query. Then we denote by Xk
+ = {xi, i = 1, . . . ,Nk} the set of feature representations248

emerged in L layer of N images that have been qualified as relevant by a user,249

and by Xk
− = {x j, j = 1, . . . ,Mk} the set of M irrelevant feature representations.250

The new target representations for the relevant and irrelevant images can be251

respectively determined by solving the following optimization problems:252

min
xi∈X

k
+

J+ = min
xi∈X

k
+

N∑
i=1

‖xi − qk‖22, (11)

and

max
x j∈X

k
−

J− = max
x j∈X

k
−

M∑
j=1

‖x j − qk‖22. (12)

We solve the above optimization problems using gradient descent. The update

rules for the n-th iteration can be formulated as:

x(n+1)
i = x(n)

i − 2α(x(n)
i − qk), xi ∈ X

k
+ (13)

and

x(n+1)
j = x(n)

j + 2α(x(n)
j − qk), x j ∈ X

k
− (14)

where the parameter α ∈ [0, 0.5] controls the desired distance from the query253

representation.254
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Similarly to the other approaches, using the above representations as targets255

in the layer of interest, we retrain the neural network on the set of relevant256

and irrelevant images. We note that the above methodology can be implemented257

in iterative steps as well as in order to improve a certain’s user information258

need, following the basic relevance feedback concept. More information and259

experiments are provided in Section 5.5.260

3.2. Layer-wise training261

The above approaches can be applied on several hidden layers. As mentioned262

before, several works utilize the fully connected layers [33, 32, 49, 34], since these263

layers are meant to capture high-level semantic information, while there are also264

works that utilize the convolutional layers exploiting the spatial information of265

these layers, using either sum-pooling techniques [36, 37] or max-pooling [38]. In266

our experiments we apply them on the 7th fully connected layer (FC7), and on267

the 6th fully connected layer (FC6). The dimension of both the FC6 and FC7268

layers is 4096 features. Firstly, in the case of the FC7 layer, we employ the269

CaffeNet model and we adapt it by discarding the FC8 layer and by replacing the270

ReLU7 layer (that is the ReLU layer following the FC7 layer) with a PReLU layer,271

[54], which is initialized randomly, and then we retrain it using the appropriate272

target representations according to the retraining strategy for the CaffeNet’s FC7273

features. We note that we consider the responses after the ReLU layer. Since274

the first layers of CaffeNet trained on ImageNet learned more generic feature275

representations, all the convolutional layers remain unchanged, and we slightly276

update the FC6 layer using a small learning rate and the FC7 layer with a bigger277

learning rate, restricting the training cost. In the case of the FC6 modification,278

we remove the FC7 and FC8 layers, and we replace the ReLU6 layer with a279

PReLU layer which is initialized randomly, and then we retrain the FC6 layer280

using proper target representations from the FC6 activation layer of the CaffeNet281

model.282
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4. Spatial Verification and Query Expansion283

Query Expansion is a standard, in most cases of negligible cost, technique284

for accomplishing better retrieval results [55]. The majority of CBIR methods285

include a query expansion step that boosts the retrieval performance. On top286

of the aforementioned approaches we also introduce a simple query expansion287

method by re-issuing the top ten retrieved corresponding image representations288

to the initial query as a new query representation, following the average query289

expansion scheme.290

Let Q be a certain query, with a CNN representation q. We consider the

top ten retrieved images Ri, i = 1, . . . , 10 of Q and their corresponding CNN

representations xi, i = 1, . . . , 10. Then, the new query representation qnew is as

follows:

qnew =
1
11

(q +
10∑
i=1

xi). (15)

Furthermore, we suggest an additional spatial verification step as follows: We291

consider a shortlist of N top initially retrieved images for each query Q, denoted292

as Ri,0, i = 1, . . . ,N. Each of these images is cropped into nine equal-sized over-293

lapping regions, Ri,1, . . . ,Ri,9. An example of the cropping approach is presented294

in Fig. 6. Subsequently, we extract the CNN features of the cropped images295

and we perform query to the dataset of N × 10 images formed by both the ini-296

tial image and the cropped ones. Then, we rerank the shortlist of the initially297

retrieved images based on the similarity of the images of the formed dataset to298

the query, and we expand the initial query representation as described above with299

respect to the reranked list. That is, we rank the N × 10 representations xi,l,300

i = 1, . . . ,N, l = 0, . . . , 9 of the formed dataset in a list, and we perform query ex-301

pansion considering the first ten unique corresponding full image representations302

of the aforementioned list, xi,0.303
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Figure 6: Spatial Verification and Query Expansion - An example of image cropping: The first retrieved

image, R1,0, for a certain query is cropped into 9 overlapping regions denoted as R1,1, . . . ,R1,9. The

height and the width of each region are equal to the half-height and the half-width respectively of

the full image

5. Experiments304

In this section we present the experiments conducted in order to assess the305

performance of the proposed method. Firstly, a brief description of the evaluation306

metrics and the datasets is provided. Subsequently, we describe the experimental307

details of each approach, and we demonstrate the experimental results. Finally,308

we present the experiments on the proposed relevance feedback technique for a309

certain’s user information need in iterative steps.310

5.1. Evaluation Metrics311

Throughout this work we use 4 evaluation metrics: precision, recall, mean

Average Precision (mAP), and top-N score. The definitions of the above metrics

follow below:

Precision =
n. of Relevant Retrieved Images

n. of Retrieved Images
(16)
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Recall =
n. of Relevant Retrieved Images

n. of Relevant Images
(17)

Mean Average Precision is the mean value of the Average Precision (AP) of all

the queries. The definition of AP for the i-th query is formulated as follows:

APi =
1

Qi

N∑
n=1

Rn
i

n
ti
n, (18)

where Qi is the total number of relevant images for the i-th query, N is the total312

number of images of the search set, Rn
i is the number of relevant retrieved images313

within the n top results; ti
n is an indicator function with ti

n = 1 if the n-th retrieved314

image is relevant to the i-the query, and ti
n = 0 otherwise.315

Finally, top-N score refers to the average number of same-object images,316

within the top-N ranked images.317

5.2. Datasets318

Inria Holidays [56]: consists of 991 images divided into 500 classes, and319

500 discrete queries. Each class in the search set consists of between 1 and 12320

images. Some images of the dataset are not in a natural orientation. We note321

that we have not proceeded to any preprocessing step of these images, as in other322

CNN-based works, e.g. [33, 36]. We measure the retrieval performance in terms323

of mAP. Sample images are shown in Fig. 7.324

Figure 7: Sample images of the Inria Holidays dataset

Paris 6k [57]: consists of 6,392 images (20 of the 6,412 provided images are325

corrupted) collected from Flickr by searching for particular Paris landmarks and326

provides 55 queries. Following the standard evaluation protocol we measure the327

retrieval performance in mAP. Like in most CNN-based works [32, 33, 49, 35, 36]328
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we use the full queries for the retrieval. The query images are not considered in329

the search set in the retrieval procedure, and neither used in the phase of model330

retraining. We show some example images in Fig. 8.331

Figure 8: Sample images of the Paris 6k dataset

UKBench [58]: contains 10,200 images of objects divided into 2,550 classes.332

Each class consists of 4 images. All 10,200 images are used as queries. The333

performance is reported as top-4 score, which is a number between 0 and 4.334

Samples are provided in Fig. 9.335

Figure 9: Sample images of the UKBench dataset

UKBench-2: since our method performs learning and the UKBench dataset336

does not provide a discrete set of queries, we hold out one image per class,337

forming a search set of 7,650 images and a set of 2,550 queries. As in UKBench,338

we use the top-3 score for the evaluation, which is a number between 0 and 3.339

NUS-WIDE [59]: contains nearly 270,000 images collected from Flickr. It340

is a multi-label dataset in which each image is annotated with one or multiple341

concepts from 81 semantic concepts. However, we should note that NUS-WIDE342

provides links for downloading the images that are not valid, and thus there343

are differences with the datasets used in previous works. NUS-WIDE dataset is344

widely used for evaluating hashing techniques for image retrieval, where most of345
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the works (e.g. [60, 61]) utilize the 21 most frequent concepts consisting of at least346

5,000 images, and the supervised methods use 500 images per concept to form a347

training set of 10,500 images. In our work, we follow the setting of the 21 most348

frequent concepts, demanding each image to be associated with only one concept.349

Thus, we form a database of 40,000 images, with at least 81 images per concept.350

For each of the 21 concepts we randomly select 100 images, to build the test set351

of 2,100 queries. We measure the retrieval performance in terms of mAP for the352

entire used database of 40,000 images. We also report the mAP within the top353

50 retrieved images. Finally, we use 40,000 additional images that do not belong354

to any concept and serve as distractors, to test the retrieval performance of our355

models in the formed database of 80,000 images. Samples are provided in Fig.356

10.357

Figure 10: Sample images of the NUS-WIDE dataset

CIFAR-10 [62]: contains 60,000 images of size 32×32, divided into 10 classes.358

Each class contains 6,000 images. Following other works, like [60], we use 50,000359

images as the dataset to be searched, and we randomly select 1,000 images from360

the remaining 10,000 images to perform queries. The retrieval performance is361

measured in terms of mAP, for the entire dataset of 50,000 images. We also362

report the mAP within the top 50 retrieved images. Sample images are provided363

in Fig. 11.364
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Figure 11: Sample images of the Cifar-10 dataset

5.3. Experimental Setup365

The proposed method was implemented using the Caffe Deep Learning frame-366

work, [63]. In our work we use the adaptive moment estimation algorithm (Adam)367

[64], instead of the simple gradient descent for the network optimization since it368

is more stable, with the default parameters β1 = 0.9, β2 = 0.999, ε = 1e − 08,369

while the learning rate is set to 1e−05. The batch size is set to 64, and the models370

are trained for 50 epochs. The models are trained on an NVIDIA GeForce GTX371

1080 with 8GB of GPU memory. All results obtained using Euclidean distance.372

In the following we present the selected parameters for each of the proposed373

approaches.374

5.3.1. Fully Unsupervised Retraining375

In this set of experiments, we consider the 2 nearest representations of each376

image for the model retraining in all the used datasets, except for the Inria377

Holidays dataset, where we obtain the new target representations with respect to378

the 1 nearest representation. The parameter η in (3) is set to 0.5.379

5.3.2. Retraining with Relevance Information380

In the experiments of this approach, since the number of relevant represen-381

tations varies meaningfully across datasets, we formulate the new target repre-382

sentations for the model retraining with respect to each relevant and 5 nearest383

irrelevant images of each image. The parameter β in (8) is set to 0.2. In Paris 6k384

dataset, we retrain the network considering relevance information for images an-385

notated either as good or as ok. Furthermore, for the Paris 6k dataset, where we386
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Table 1: Inria Holidays

Scheme Feature Representation mAP

1
CaffeNet

CaffeNet ⇒ FC6 0.6184

2 CaffeNet ⇒ FC7 0.6988

3
FU

CaffeNet −→ FU(FC6; FC6) ⇒ FC6 0.6608

4 CaffeNet −→ FU(FC6,FC7; FC7) ⇒ FC7 0.7307

5
RRI

CaffeNet −→ RRI(FC6; FC6) ⇒ FC6 0.6649

6 CaffeNet −→ RRI(FC6,FC7; FC7) ⇒ FC7 0.74

7
RF

CaffeNet −→ RF(FC6; FC6) ⇒ FC6 0.7557

8 CaffeNet −→ RF(FC6,FC7; FC7) ⇒ FC7 0.7556

9 FU+RF CaffeNet −→ FU(FC6,FC7; FC7) −→ RF(FC6,FC7; FC7) ⇒ FC7 0.7942

10 FU+RRI CaffeNet −→ FU(FC6,FC7; FC7) −→ RRI(FC6,FC7; FC7) ⇒ FC7 0.7687

11 FU+RRI+RF CaffeNet −→ FU(FC6,FC7; FC7) −→ RRI(FC6,FC7; FC7) −→ RF(FC6,FC7; FC7) ⇒ FC7 0.8497

utilize information deriving from the available distractors, we note that the num-387

ber of the utilized distractors varies through datasets and employed approaches.388

Thus, in Paris dataset, we use information obtained from 846 distractor images389

for the model retraining, in the FC7 approach (6th row of Table 2), while only 38390

distractors used in the FC6 one (5th row of Table 2). The parameter θ in (10) for391

the distractors target formulation is set to 0.5.392

5.3.3. Relevance Feedback Based Retraining393

In the experiments that conducted to validate the performance of the Rele-394

vance Feedback based approach, we consider for each of 500 different users 1395

relevant and 5 irrelevant images for the Inria Holidays dataset, which forms a396

training set of 3,000 images. In Paris 6k dataset, 40 relevant and 20 irrele-397

vant images are considered for each of 55 different users, while in UKBench-2398

dataset we use 1 relevant and 1 irrelevant images for the 2,550 different users.399

In CIFAR-10 dataset we use 12 relevant and 1 irrelevant images for the 1,000400

different users, while in NUS-WIDE we use 5 relevant and 1 irrelevant images401

for the 2,100 different users. The parameter α in (13), (14) is set to 0.5.402

5.4. Experimental Results403

The three proposed retraining approaches can be applied on several hidden404

layers. Several works utilize the fully connected layers [33, 32, 49, 34], while there405
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Table 2: Paris 6k

Scheme Feature Representation mAP

1
CaffeNet

CaffeNet ⇒ FC6 0.4621

2 CaffeNet ⇒ FC7 0.5388

3
FU

CaffeNet −→ FU(FC6; FC6) ⇒ FC6 0.6855

4 CaffeNet −→ FU(FC6,FC7; FC7) ⇒ FC7 0.6984

5
RRI

CaffeNet −→ RRI(FC6; FC6) ⇒ FC6 0.9794

6 CaffeNet −→ RRI(FC6,FC7; FC7) ⇒ FC7 0.9808

7
RF

CaffeNet −→ RF(FC6; FC6) ⇒ FC6 0.6418

8 CaffeNet −→ RF(FC6,FC7; FC7) ⇒ FC7 0.6547

9 FU+RF CaffeNet −→ FU(FC6,FC7; FC7) −→ RF(FC6,FC7; FC7) ⇒ FC7 0.7714

Table 3: UKBench

Scheme Feature Representation Score

1
CaffeNet

CaffeNet ⇒ FC6 3.1308

2 CaffeNet ⇒ FC7 3.3501

3
FU

CaffeNet −→ FU(FC6; FC6) ⇒ FC6 3.48

4 CaffeNet −→ FU(FC6,FC7; FC7) ⇒ FC7 3.5559

5
RRI

CaffeNet −→ RRI(FC6; FC6) ⇒ FC6 3.9927

6 CaffeNet −→ RRI(FC6,FC7; FC7) ⇒ FC7 3.9371
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Table 4: UKBench-2

Scheme Feature Representation Score

1
CaffeNet

CaffeNet ⇒ FC6 2.2086

2 CaffeNet ⇒ FC7 2.3996

3
FU

CaffeNet −→ FU(FC6; FC6) ⇒ FC6 2.4345

4 CaffeNet −→ FU(FC6,FC7; FC7) ⇒ FC7 2.5878

5
RRI

CaffeNet −→ RRI(FC6; FC6) ⇒ FC6 2.6996

6 CaffeNet −→ RRI(FC6,FC7; FC7) ⇒ FC7 2.7769

7
RF

CaffeNet −→ RF(FC6; FC6) ⇒ FC6 2.3400

8 CaffeNet −→ RF(FC6,FC7; FC7) ⇒ FC7 2.5020

9 FU+RRI CaffeNet−→ FU(FC6,FC7; FC7) −→ RRI(FC6,FC7; FC7) ⇒ FC7 2.8251

10 FU+RF CaffeNet −→ FU(FC6,FC7; FC7) −→ RF(FC6,FC7; FC7) ⇒ FC7 2.6396

Table 5: NUS-WIDE 40k

Scheme Feature Representation mAP mAP@50

1
CaffeNet

CaffeNet ⇒ FC6 0.0962 0.1608

2 CaffeNet ⇒ FC7 0.1276 0.1734

3
FU

CaffeNet −→ FU(FC6; FC6) ⇒ FC6 0.114 0.247

4 CaffeNet −→ FU(FC6,FC7; FC7) ⇒ FC7 0.1606 0.326

5
RRI

CaffeNet −→ RRI(FC6; FC6) ⇒ FC6 0.1532 0.2806

6 CaffeNet −→ RRI(FC6,FC7; FC7) ⇒ FC7 0.2242 0.3521

7
RF

CaffeNet −→ RF(FC6; FC6) ⇒ FC6 0.1439 0.3537

8 CaffeNet −→ RF(FC6,FC7; FC7) ⇒ FC7 0.1856 0.4255

9 FU+RF CaffeNet −→ FU(FC6,FC7; FC7) −→ RF(FC6,FC7; FC7) ⇒ FC7 0.2095 0.4561

10 FU+RRI CaffeNet −→ FU(FC6,FC7; FC7) −→ RRI(FC6,FC7; FC7) ⇒ FC7 0.2350 0.3599
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Table 6: NUS-WIDE 80k

Scheme Feature Representation mAP mAP@50

1
CaffeNet

CaffeNet ⇒ FC6 0.0539 0.1403

2 CaffeNet ⇒ FC7 0.0772 0.2155

3
FU

CaffeNet −→ FU(FC6; FC6) ⇒ FC6 0.064 0.1621

4 CaffeNet −→ FU(FC6,FC7; FC7) ⇒ FC7 0.094 0.2285

5
RRI

CaffeNet −→ RRI(FC6; FC6) ⇒ FC6 0.092 0.2005

6 CaffeNet −→ RRI(FC6,FC7; FC7) ⇒ FC7 0.1395 0.2529

7
RF

CaffeNet −→ RF(FC6; FC6) ⇒ FC6 0.1098 0.32

8 CaffeNet −→ RF(FC6,FC7; FC7) ⇒ FC7 0.1364 0.3777

9 FU+RF CaffeNet −→ FU(FC6,FC7; FC7) −→ RF(FC6,FC7; FC7) ⇒ FC7 0.1489 0.4017

10 FU+RRI CaffeNet −→ FU(FC6,FC7; FC7) −→ RRI(FC6,FC7; FC7) ⇒ FC7 0.1434 0.2627

Table 7: CIFAR-10 - CaffeNet Initialization

Scheme Feature Representation mAP mAP@50

1
CaffeNet

CaffeNet ⇒ FC6 0.2153 0.4613

2 CaffeNet ⇒ FC7 0.2533 0.5210

3
FU

CaffeNet −→ FU(FC6; FC6) ⇒ FC6 0.2423 0.4707

4 CaffeNet −→ FU(FC6,FC7; FC7) ⇒ FC7 0.2862 0.5393

5
RRI

CaffeNet −→ RRI(FC6; FC6) ⇒ FC6 0.332 0.5212

6 CaffeNet −→ RRI(FC6,FC7; FC7) ⇒ FC7 0.4297 0.5942

7
RF

CaffeNet −→ RF(FC6; FC6) ⇒ FC6 0.2444 0.5676

8 CaffeNet −→ RF(FC6,FC7; FC7) ⇒ FC7 0.2766 0.6232

9 FU+RRI CaffeNet −→ FU(FC6,FC7; FC7) −→ RRI(FC6,FC7; FC7) ⇒ FC7 0.4585 0.6044

Table 8: CIFAR-10 - KevinNet Initialization

Scheme Feature Representation mAP mAP@50

1
KevinNet

KevinNet ⇒ FC6 0.2922 0.5988

2 KevinNet ⇒ FC7 0.6024 0.847

3
FU

CaffeNet −→ FU(FC6; FC6) ⇒ FC6 0.3756 0.6897

4 CaffeNet −→ FU(FC6,FC7; FC7) ⇒ FC7 0.6379 0.8466

5
RRI

KevinNet −→ RRI(FC6; FC6) ⇒ FC6 0.53 0.72

6 KevinNet −→ RRI(FC6,FC7; FC7) ⇒ FC7 0.6989 0.8519

7
RF

KevinNet −→ RF(FC6; FC6) ⇒ FC6 0.3882 0.76

8 KevinNet −→ RF(FC6,FC7; FC7) ⇒ FC7 0.6377 0.8542

9 FU+RRI CaffeNet −→ FU(FC6,FC7; FC7) −→ RRI(FC6,FC7; FC7) ⇒ FC7 0.7285 0.8532
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are also works that utilize the convolutional layers with pooling techniques to406

produce the image descriptors [36, 37, 38]. In our work we use the fully-connected407

layers, since these layers are meant to capture high level semantic information.408

Thus, experiments conducted for each of the three proposed retraining approaches409

on the FC6 and the FC7 layers (we did not considered the FC8 layer, since it is410

a distribution over the 1,000 ImageNet class labels). We note that by utilizing411

the FC7 layer, we produce richer descriptors which can lead to better retrieval412

performance, since the FC7 layer captures higher level concepts as compared413

to the FC6 layer, however it comes with additional computational cost. More414

information can be found in the section 5.4.1 that discusses the computational415

cost. Furthermore, based on the available information, the retraining approaches416

can be applied in a pipeline. In this fashion, each retraining approach operates417

as a pretraining step to the subsequent one. For example, the Fully Unsupervised418

approach can be applied as pretraining step to both the Retraining with Relevance419

Information and the Relevance Feedback based approaches, since it requires no420

additional information except for the dataset itself. Therefore, we have conducted421

indicative experiments building combinatory retraining schemes, investigating the422

assumption that the combinatory schemes can improve the single-step training423

approaches.424

In the following we denote by FC6 and FC7 the feature representations ob-425

tained from the FC6 and FC7 layer of the CNN model respectively. We also426

abbreviate the applied query expansion technique to QE, and the spatial verifica-427

tion and query expansion to SVQE. Finally, we denote by FU(L1, L2, ...; LT ) the428

fully unsupervised retraining on the layers L1, L2, ... with target representations429

obtained from the LT layer, by RRI(L1, L2, ...; LT ) the retraining with relevance430

information on the layers L1, L2, ... with target representations obtained from the431

LT layer, and correspondingly by RF(L1, L2, ...; LT ) the relevance feedback based432

retraining. We use consecutive arrows to describe the retraining pipeline of our433

approaches, and the implication arrow to show the final feature representation434

employed for the retrieval procedure. Thus, CaffeNet ⇒ FC7 implies that we435

obtain the FC7 representations directly from the CaffeNet model and we use them436
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for the retrieval procedure, while CaffeNet −→ RRI(FC6,FC7; FC7) ⇒ FC7 de-437

notes that we formulate the target representations using the features emerged in438

the FC7 CaffeNet layer and we retrain both the FC6 and FC7 layers of the Caf-439

feNet, then we extract the FC7 representations of the modified model, and we use440

them for the retrieval.441

Tables 1 - 8 summarize the experimental results on all the datasets. The best442

performance is printed in bold. From the provided results several remarks can be443

drawn. Firstly, we observe that each retraining approach improves the baseline444

results of CaffeNet in all the used datasets. We also see that the other proposed445

methodologies applied on the modified via the FU approach model yield better446

retrieval results, as compared to the CaffeNet’s employment, in any considered447

case. In some cases this sequential strategy can lead to outstanding performance,448

as in the UKBench-2 dataset, where the refined with relevance information model449

on the fully unsupervised model outperforms any other approach. Hence, we450

mainly suggest the FU retraining as a pretraining step that can be utilized to boost451

the performance of the other retraining approaches. Additionally, we observe452

that the modified in RRI fashion descriptors enhance significantly the baseline453

results of CaffeNet in all the datasets on both the FC6 and FC7 approaches, and454

in Paris 6k dataset we can accomplish state-of-the-art performance by a single455

training step. Furthermore it is shown that by applying the proposed approaches456

in pipelines we can achieve outstanding performance. In the Inria Holidays457

dataset (Table 1), we notice that the RF approach is more effective than both458

the FU and RRI. This is reasonable since the training set of the RF approach459

(consisting of 3,000 images) is considerably larger than the one of the other two460

approaches (consisting of 991 images). Furthermore, we can observe in the case461

of the UKBench-2 dataset (Table 3) that he improvement of the RF approach is462

not as notable as the FU and RRI ones. We attribute this to the comparatively463

small training set of the RF approach (5,100 against 10,200 images).464

Regarding the NUS-WIDE dataset, we first examine the impact of the number465

of training samples to the retrieval performance. That is, we apply our Fully466

Unsupervised retraining approach using 2,000, 5,000, 13,000 26,000 and 40,000467
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(that is the entire database) training samples. The experimental results are illus-468

trated in Fig. 12 . As it is shown, the obtained mAP utilizing 13,000 images is469

0.1606, while it reaches up to 0.1678 utilizing the entire database. Thus, since470

the number of training samples also comes with computational cost, a good com-471

promise is to set the number of training samples to 13,000 images. Therefore, in472

the following, we utilize 13,000 images from the database to train the proposed473

models, and we use the entire database in the retrieval stage, for the evalua-474

tion. Furthermore, we test the performance each of the proposed approaches in475

the extended version of the dataset with 80,000 images, where we use 40,000476

additional images, that do not belong to any concept and serve as distractors. In477

Table 5 we illustrate the experimental results on the NUS-WIDE dataset of 40,000478

images, and in Table 6 we illustrate the experimental results on the NUS-WIDE479

dataset of 80,000 images. As we can observe in both cases each of the proposed480

approaches improves notably the baseline results. The RRI approach applied on481

the FC7 layer achieves the best performance in the single-step retraining, improv-482

ing the baseline CaffeNet’s results by 10 mAP points. Regarding the RF approach,483

we see that the improvement is more significant for the top-50 retrieved images,484

achieving outstanding performance against the other retraining strategies. This485

is reasonable since we use the top 6 retrieved images for each of the queries to486

build the dataset for the model retraining, and hence we expect to better improve487

the top retrieved images. Concerning the combinatory schemes, as noticed in488

the other datasets, we observe that we can achieve enhanced performance, as489

compared to the single-step retraining, by applying the retraining approaches in490

a pipeline.491
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Figure 12: mAP using the FU retraining approach, for various numbers of training samples

In the case of the CIFAR-10 dataset apart from the CaffeNet pretrained model,492

we also use the KevinNet model [47], which is trained on the CIFAR-10 dataset493

for producing binary hash codes for the retrieval task, validating our claim that494

the proposed method is applicable to various model architectures, as well as to495

finetuned weights for different tasks. We use either the FC7 or the FC6 repre-496

sentations, in order to maintain the computational complexity of the proposed497

approach, however we could also use the representations produced by the subse-498

quent encoding layer, the so called fc8 kevin encode layer. We also tested the499

performance of the proposed RRI approach in the aforementioned layer, achieving500

a considerable improvement from 0.7907 to 0.8369 in terms of mAP. This also501

confirms that the proposed approach can be applied in combination with other502

approaches for image retrieval. Furthermore, following this direction, we also503

evaluated the hashing codes produced by the RRI optimized fc8 kevin encode504

layer, and we report a significant improvement from 0.7863 to 0.8466 in terms of505

mAP. As it is shown in Tables 7 and 8 the KevinNet model achieves notably better506

baseline results, which is reasonable since it is finetuned on CIFAR-10 dataset.507

Furthermore, the observations drawn in the previous datasets, are also confirmed508

in CIFAR-10. That is, each of the proposed approaches improve the baseline re-509

sults of CaffeNet and KevinNet correspondingly. Additionally, concerning the RF510

approach, similarly to the NUS-WIDE dataset, we see that achieves significantly511

better results for the top 50 retrieved images, as expected since we use the top512

13 retrieved images of each query, and thus the top retrieved images are better513
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Figure 13: Inria Holidays: Precision-Recall curves of RRI
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Figure 14: Paris 6k: Precision-Recall curves of RRI

improved. Finally, we can observe that the proposed approaches on the KevinNet514

initialization, while improve notably the mAP over all the dataset, achieve com-515

paratively poorer improvement over the top 50 retrieved images in the case of516

the FC7 representations. This is attributed to the fact that the optimized weights517

for the binary hashing retrieval task, achieve already enhanced performance, and518

thus the proposed method can slightly boost them. On the contrary, we observe519

that we can achieve more significant improvement for the 50 retrieved images on520

the CaffeNet initialization.521

In Fig. 13, 14 we provide the Precision-Recall curves of the considered ap-522

proaches of the RRI scheme for the Iniria Holidays and Paris 6k datasets respec-523

tively. In both the datasets, the FC7 modification yields better performance.524

In Fig. 15, 16 we illustrate the the Precision-Recall curves for the combinatory525

schemes on Inria Holidays, and Paris 6k datasets respectively. It is shown that526

we can indeed achieve significantly enhanced results by applying our retraining527

approaches in a pipeline as compared to the independent ones.528

In Fig. 17, 18, 19 we provide some examples of the top retrieved images529

for certain queries, using the baseline CaffeNet’s features and features obtained530

from our retrained models, in Paris 6k, Inria Holidays and UKBench-2 datasets,531

respectively.532
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Figure 15: Inria Holidays: Combinatory Schemes
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Figure 16: Paris 6k: Combinatory Schemes

Figure 17: Paris: The query image is the first one of the top row and the images that follow in the top

row are the first 6 retrieved using the baseline FC7 representation. The top 6 retrieved images using

the RRI approach on the FC7 layer are shown in the second row for the same query

Figure 18: Inria Holidays: The query image is the first one of the top row and the images that follow

in the top row are the first 5 retrieved using the baseline FC7 representation. The top 5 retrieved

images using the RRI approach on the FC7 layer are shown in the second row for the same query
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Figure 19: UKBench-2: The query image is the first one of the top row and the images that follow in

the top row are the first 3 retrieved using the baseline FC6 representation. The top 3 retrieved images

using the RRI approach on the FC6 layer are shown in the second row for the same query

5.4.1. Computational Cost533

The proposed method requires a CNN pretrained model, ideally trained on534

the ImageNet dataset composed of 1.2 million images divided into 1,000 classes,535

since it produces a rich description of the physical world. Training such a model,536

depending on the available GPUs, requires roughly a few days. However, a com-537

mon practice in CNN-based works in the retrieval domain is to utilize a pretrained538

CNN model, and hence in our work, as previously stated, we utilize the CaffeNet539

model. Subsequently, applying each of the proposed methods, requires a certain540

training time. Once the models are trained based on the available information,541

no additional time is required for the retrieval procedure. That is, the testing542

complexity is exactly the same as the baseline models (e.g. CaffeNet, or Kevin-543

Net). Regarding the training time, the experiments conducted on an NVIDIA544

GeForce GTX 1080 with 8GB of GPU memory, where the average backward pass545

time for an input image of the fixed size of 227×227 is 3.32 ms, while the forward546

pass takes 2.73 ms, for the model which produces output at the FC7 layer, and547

correspondingly, the average backward pass time is 2.53 ms, and the forward one548

is 1.97 ms, for the model which produces output at the FC6 layer. Furthermore we549

also performed experiments on an NVIDIA GeForce GTX 1060 with 6GB of GPU550

memory, as well as on an NVIDIA Quadro K4000 with 3GB of GPU memory, to551

measure the training time. The results are illustrated in Table 9.552
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Table 9: Training time for an input image on various GPUs (FC7 model)

GPU Backward Pass Forward Pass

NVIDIA GeForce GTX 1080 3.32 ms 2.73 ms

NVIDIA GeForce GTX 1060 5.86 ms 2.79 ms

NVIDIA Quadro K4000 13.23 ms 9.07 ms

In order to improve the deploy speed of the proposed models, we utilize the553

NVIDIA TensorRT2 tool. TensorRT is a high-performance learning inference554

library, which automatically optimizes trained neural networks for run-time per-555

formance. Thus, using TensorRT we achieve a significant speed up in both the556

proposed model architectures. That is, for the FC7 model the forward pass takes557

1.43 ms, while for the FC6 model it takes 1.18 ms.558

559

5.4.2. Impact of the probabilistic factors560

In this work, we propose a model retraining framework, which is overall able561

to exploit any kind of available information. The core idea is that we utilize562

a pretrained CNN model, in order to derive the feature representations of a563

deep layer, and we retrain the weights of the model, exploiting the idea that564

a deep neural architecture can non-linearly distort the feature space in order565

to modify the feature representations, with respect to the available information.566

Hence, the utilization of fixed weights as the model initialization for the retraining567

task, leads to deterministic results, in the retrieval performance. In this section,568

we investigate the impact of the probabilistic factors in the performance of the569

proposed method. That is, the ordering of input data and the different test images570

to perform queries. We choose the CIFAR-10 dataset, to explore the impact of the571

aforementioned factors, since the test set of the rest of the datasets is fixed, not572

allowing to straightforwardly perform queries with different images. We use as573

weights initialization the CaffeNet model. Thus, we repeat each of the FU, RRI,574

2https://developer.nvidia.com/tensorrt
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and RF experiments 5 times, using different random shuffling of input images,575

and we evaluate the retrieval performance of the corresponding retrained models576

on the FC7 layer, using 5-fold cross validation on 5 different test sets of 1,000577

queries, randomly selected from the provided test set of 10,000 images. We also578

compute the mAP for the 5 five different test sets using the CaffeNet model. The579

experimental results for the mean value and the standard deviation of the mAP for580

the five runs are illustrated in Table 10. It is evident that the probabilistic factors581

do no affect the results significantly, giving quite stable performance among the582

runs.583

Table 10: CIFAR-10: 5-fold Cross Validation

Retraining method mAP

CaffeNet 0.2553 ± 0.0051

FU 0.2836 ± 0.0057

RRI 0.4379 ± 0.0087

RF 0.2759 ± 0.0036

In Table 11 we provide the experimental evaluation of our spatial verification584

and query expansion technique on the best approach of each dataset. In the585

UKBench-2 dataset we use 100 queries. From the demonstrated results we can586

notice that indeed the query expansion improves the retrieval results, while the587

spatial reranking step slightly boosts the initial performance. This is reasonable,588

since the spatial verification is more useful on the region based image retrieval,589

where we perform queries with a specified region of interest. To this aim, we590

employ the cropped-queries versions of Paris 6k dataset, and we apply our RRI591

method on the initial CaffeNet’s features. The baseline mAP is 0.5345 for Paris592

6k dataset. We note that in this version, the corresponding full images of the593

cropped queries are included in the search set. Subsequently, we apply our spatial594

verification and query expansion approach on the modified representations. Table595

12 illustrates the experimental results.596
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Table 11: mAP & Score - Spatial Verification & Query Expansion on our best approaches

Paris 6k UKBench-2

Best Result 0.9808 2.80

QE 0.9915 2.82

SVQE 0.9916 2.85

Table 12: mAP - Spatial Verification & Query Expansion on Refined with Relevance Information FC7

approach

Paris 6k Cropped

Initial Result 0.9742

QE 0.9890

SVQE 0.9932

Finally, in Table 13 we compare our method against other CNN-based, as well597

as hand-crafted feature-based methods, on image retrieval. MAP measures the598

retrieval performance in the Inria Holidays and Paris 6k datasets, while top-4599

score is used in the case of the UKBench dataset. Since the proposed RF ap-600

proach is novel, and the competitive methods do not utilize information derived601

from users’ feedback, the RF results are reported only in Tables 1-8 and we do not602

include them in the comparisons. Methods marked with * use the cropped queries603

in Paris 6k dataset. To the best of our knowledge, the proposed approach outper-604

forms every other competitive method, in two out of three datasets. We should605

note that in Inria Holidays dataset, we can accomplish competitive results only606

with the RF approach and the combinatory retraining schemes. This is attributed607

to the nature of the dataset. The Inria Holidays dataset is composed of 991 train608

images belonging to 500 classes, with each class consisting of between 1 to 12 im-609

ages. That is, we have less than 2 images per class, on average. Therefore, since610

a key factor of success of the RRI approach is the number of relevant images per611

class for the new targets formulation in the retraining process, Inria dataset can612

not benefit from it. Furthermore, the number of the train images constitutes in613
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general an important factor in the deep CNN learning. Thus, the train dataset,614

consisting of 991 images, in both FU and RRI approaches, is small for achieving615

competitive results against other methods. On the contrary, as we can observe616

in Table 1, the RF retraining approach, which builds a dataset of 3,000 images,617

outperforms the aforementioned proposed approaches, and we can achieve com-618

petitive results to the state-of-the-art methods by applying combinatory retraining619

strategies.620

The trained models of the proposed framework are available at: https://621

github.com/mtzelepi/framework622

Table 13: Comparison against other methods

Method Inria Holidays Paris 6k UKBench

CVLAD* [65] 0.827 - 3.62

VLAD* [11] 0.653 - -

T-embedding* [66] 0.781 - -

BOW 200k-D* [67] 0.54 0.46 2.81

Neural Codes [33] 0.793 - 3.56

CNNaug-ss [32] 0.843 0.795 3.644

ReDSL.FC1 [49] - 0.9474 -

Spoc [36] 0.808 - 3.65

CNN-VLAD [35] 0.84 0.694 -

CRB-CNN-16 [41] 0.854 - 3.56

Deep Image Retrieval [39] 0.907 0.912 -

Deep Image Retrieval & QE [39] - 0.938 -

R-MAC* [38] - 0.83 -

R-MAC & QE [38] - 0.865 -

CroW* [37] 0.849 0.796 -

CroW & QE [37] - 0.83 -

Ours 0.74 0.9808 3.9927

Ours & QE - 0.9916 -
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5.5. Relevance Feedback623

As mentioned before, the relevance feedback based retraining approach can624

be materialized in order to improve a certain’s user information need in iterative625

steps [68]. Thus, in each feedback round, the user marks either as relevant or as626

irrelevant the retrieved images, and the system uses this information to retrain the627

CNN model according to the methodology described in Section 3.1.3 for multiple628

users. The relevance feedback procedure is integrated by feeding the images of629

the given dataset and the query image into the input layer of the modified model630

and obtaining the new representations. The above process is performed in each631

relevance feedback round, by initializing the CNN model with the parameters632

of the previous round and retraining on the new set of relevant and irrelevant633

images with their corresponding updated targets. Given a new query from the634

user, the system executes the procedure from the beginning.635

In order to evaluate the proposed approach, we perform experiments on the636

Inria Holidays dataset. We obtain the FC7 representations from the CaffeNet637

model. We consider as search set 991 images and we perform 100 queries from638

the residue. Each class in the search set consists of between 1 and 12 images. We639

execute 3 relevance feedback rounds for each query. At each relevance feedback640

round we use 3 relevant and 3 irrelevant images for the model retraining. The641

model is trained for 2 epochs at each relevance feedback round. We measure the642

performance at each feedback round in terms of Precision, and we compute the643

average precision obtained over all the performed queries. Average precision is644

measured for the top 3 retrieved images. Experimental results are illustrated in645

Fig. 20. We can observe that the proposed methodology improves the retrieval646

performance by the first feedback round.647
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Figure 20: Inria Holidays: Relevance Feedback

6. Conclusions648

In this paper we proposed a model retraining framework for enhancing deep649

CNN representations in the retrieval domain. The proposed method is able to650

exploit any kind of available information. Thus, if no information is available,651

the Fully Unsupervised retraining approach is proposed, if the labels are avail-652

able the Retraining with Relevance Information, and finally if users’ feedback653

is available the Relevance Feedback based retraining is proposed. We utilize a654

deep CNN model to obtain the feature representations and build the target rep-655

resentations according to each approach, and then we retrain appropriately the656

network’s weights. We also proposed combinatory retraining strategies, where657

each of the retraining approaches can be utilized as a pretraining step in order to658

boost the performance of the following one. A query expansion technique with a659

spatial verification step applied on top of the best stated approaches provides fur-660

ther boosting of the retrieval performance. We should note that all the proposed661

approaches are applicable to any other CNN-based works for image retrieval that662

utilize a CNN model to directly extract feature representations. Experimental re-663

sults indicate the effectiveness of our method, performing superior performance664

over the state of the art approaches, either via a single retraining approach, or by665

utilizing successive retraining processes.666
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