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Abstract

In this paper we propose a model retraining method for learning more efficient

convolutional representations for Content Based Image Retrieval. We employ a

deep CNN model to obtain the feature representations from the activations of the

convolutional layers using max-pooling, and subsequently we adapt and retrain

the network, in order to produce more efficient compact image descriptors, which

improve both the retrieval performance and the memory requirements, relying

on the available information. Our method suggests three basic model retraining

approaches. That is, the Fully Unsupervised Retraining, if no information except

from the dataset itself is available, the Retraining with Relevance Information, if

the labels of the training dataset are available, and the Relevance Feedback based

Retraining, if feedback from users is available. The experimental evaluation

on three publicly available image retrieval datasets indicates the effectiveness of

the proposed method in learning more efficient representations for the retrieval

task, outperforming other CNN-based retrieval techniques, as well as conventional

hand-crafted feature-based approaches in all the used datasets.
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1. Introduction1

Image retrieval is a research area of Information Retrieval [1] of great scientific2

interest since 1970s. Earlier studies include manual annotation of images using3

keywords and searching by text [2]. Content Based Image Retrieval (CBIR), [3],4

has been proposed in 1990s, in order to overcome the difficulties of text-based5

image retrieval, deriving from the manual annotation of images, that is based6

on the subjective human perception, and the time and labor requirements of7

annotation.8

CBIR refers to the process of obtaining images that are relevant to a query9

image from a large collection based on their visual content [4]. Given the feature10

representations of the images to be searched and the query image, the output of11

the CBIR procedure includes a search in the feature space, in order to retrieve a12

ranked set of images in terms of similarity (e.g. cosine similarity) to the query13

representation. A key issue associated with CBIR is to extract meaningful in-14

formation from raw data in order to eliminate the so-called semantic-gap [5].15

The semantic-gap refers to the difference between the low level representations16

of images and their higher level concepts. While earlier works focus on primi-17

tive features that describe the image content such as color, texture, and shape,18

numerous more recent works have been elaborated on the direction of finding se-19

mantically richer image representations. Among the most effective are those that20

use the Fisher Vector descriptors [6], Vector of Locally Aggregated Descriptors21

(VLAD) [7, 8] or combine bag-of-words models [9] with local descriptors such as22

Scale-Invariant Feature Transform (SIFT) [10].23

Several recent studies introduce Deep Learning algorithms [11] against the24

shallow aforementioned approaches to a wide range of computer vision tasks,25

including image retrieval [12, 13, 14, 15]. The main reasons behind their success26

are the availability of large annotated datasets, and the GPUs computational27

power and affordability. Deep Convolutional Neural Networks (CNN), [16, 17], are28

considered the more efficient Deep Learning architecture for visual information29

analysis. CNNs comprise of a number of convolutional and subsampling layers30
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with non-linear neural activations, followed by fully connected layers. That is,31

the input image is introduced to the neural network as a three dimensional tensor32

with dimensions (i.e., width and height) equal to the dimensions of the image and33

depth equal to the number of color channels (usually three in RGB images). Three34

dimensional filters are learned and applied in each layer where convolution is35

performed and the output is passed to the neurons of the next layer for non-linear36

transformation using appropriate activation functions. After multiple convolution37

layers and subsampling the structure of the deep architecture changes to fully38

connected layers and single dimensional signals. These activations are usually39

used as deep representations for classification, clustering or retrieval.40

Over the last few years, deep CNNs have been established as one of the most41

promising avenues of research in the computer vision area due to their outstand-42

ing performance in a series of vision recognition tasks, such as image classifi-43

cation [18, 19], face recognition [20], digit recognition [21, 22], pose estimation44

[23], and object and pedestrian detection [24, 25]. It has also been demonstrated45

that features extracted from the activation of a CNN trained in a fully supervised46

fashion on a large, fixed set of object recognition tasks can be re-purposed to novel47

generic recognition tasks, [26]. Motivated by these results, deep CNNs introduced48

in the vivid research area of CBIR. The primary approach of applying deep CNNs49

in the retrieval domain is to extract the feature representations from a pretrained50

model by feeding images in the input layer of the model and taking activation51

values drawn either from the fully connected layers [27, 28, 29, 30] which are52

meant to capture high-level semantic information, or from the convolutional lay-53

ers exploiting the spatial information of these layers, using either sum-pooling54

techniques [31, 32] or max-pooling [33]. Current research also includes model55

retraining approaches, which are more relevant to our work, while other studies56

focus on the combination of the CNN descriptors with conventional descriptors57

like the VLAD representation. The existing related works are discussed in the58

following section.59

Our work investigates model retraining (also known as finetuning) approaches60

in order to enhance the deep CNN descriptors for the retrieval task. We employ61
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a pretrained model to extract feature representations from the activations of the62

convolutional layers using max-pooling, we properly adapt the model, and we63

subsequently retrain it. By retraining we mean that we use the weights of a model64

pretrained for classification, and we finetune them for a different task, instead of65

training from scratch with randomly initialized weights, exploiting the idea that66

a deep neural architecture can non-linearly distort the feature space in order to67

modify the feature representations, with respect to the available information.68

Based on the available information we propose three retraining approaches,69

which are overall able to exploit any kind of available information:70

• Fully Unsupervised Retraining (FU): if no information is available, except71

for the dataset itself.72

• Retraining with Relevance Information (RRI): if the labels of the dataset or73

of a part of the dataset are available.74

• Relevance Feedback-based Retraining (RF): if feedback from users is avail-75

able.76

Furthermore, since the FU approach can be applied in any case, we deploy77

combinatory schemes, where the RRI and RF approaches can be applied on the78

FU modified model, in a pipeline. In this fashion the FU retraining approach79

operates as a pretraining step to the subsequent one.80

Finally, this method uses retargeting for the learning phase, instead of triplet81

loss, allowing for single sample training which is very fast and can be easily82

parallelized and implemented in a distributed manner.83

The remainder of the manuscript is structured as follows. Section 2 discusses84

prior work. The proposed method is described in detail in Section 3. Experiments85

are provided in Section 4. Finally, conclusions are drawn in Section 5.86

2. Prior Work87

In this Section we present previous CNN-based works for image retrieval.88

Firstly, an evaluation of CNN features in various recognition tasks, including89
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image retrieval that improve the baseline performance using spatial information90

is presented in [28]. In [27] an image retrieval method, where a CNN pretrained91

model is retrained on a different dataset with relevant image statistics and classes92

to the dataset considered at the test time and achieves improved performance, is93

proposed. From a different viewpoint, in [30, 34], CNN activations at multiple94

scale levels are combined with the VLAD representation. In [31], a feature aggre-95

gation pipeline is presented using sum pooling. while in [32] a cross-dimensional96

weighting and aggregation of deep convolutional neural network layer output is97

proposed. An approach that produces compact feature vectors derived from the98

convolutional layer activations that encode several image regions is proposed in99

[33]. In [35], a three-stream Siamense network is proposed to optimize the weights100

of the so-called R-MAC representation, proposed in [33], for the retrieval task,101

using a triplet ranking loss. The public Landmarks dataset, that is also used in102

[27], is utilized for the model training. In [36] a pipeline that uses the convolu-103

tional CNN-features and the bag-of-Words aggregation scheme is proposed, while104

in [37] the authors propose to exploit complementary strengths of CNN features105

of different layers outperforming the concatenation of multiple layers. In [38],106

the bilinear CNN-based architectures [39] are introduced in the CBIR domain107

where a bilinear root pooling is proposed to project the features extracted from108

the two parallel CNN models into a small dimension and the resulting model109

is trained on image retrieval datasets using unsupervised training. In [40] a110

new distance metric learning algorithm, namely weakly-supervised deep metric111

learning, is proposed, for social image retrieval by exploiting knowledge from112

community contributed images associated with user-provided tags. The learned113

metric can well preserve the semantic structure in the textual space and the vi-114

sual structure in the original visual space simultaneously, which can enable to115

learn a semantic-aware distance metric. In [41], a Weakly-supervised Deep Matrix116

Factorization framework is proposed for social image tag refinement, tag assign-117

ment and image retrieval, that uncovers the latent image representations and118

tag representations embedded in the latent subspace by collaboratively exploiting119

the weakly-supervised tagging information, the visual structure and the semantic120
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structure.121

A deep CNN is retrained with similarity learning objective function, consider-122

ing triplets of relevant and irrelevant instances obtained from the fully connected123

layers of the pretrained model, in [29]. A related approach has also been proposed124

in the face recognition task which, using a triplet-based loss function, achieves125

state-of-the-art performance, [42], while a relevant idea recently successfully in-126

troduced in the cross-modal retrieval domain [43]. These approaches are using127

triplet sample learning which is difficult to be implemented in large scale, and128

usually active learning is used in order to select meaningful triplets that can in-129

deed contribute to learning [42]. In our approach we extend these methodologies130

by considering multiple relevant and multiple irrelevant samples in the training131

procedure for each training sample. Additionally, we boost the training speed132

by defining representation targets for the training samples and regression on the133

hidden layers, instead of defining more complex loss functions that need three134

samples for each training step. That is, our approach uses single sample train-135

ing allowing for very fast and distributed learning. Furthermore, the proposed136

method is also able to exploit the geometric structure of the data using unsuper-137

vised learning, as well as to exploit the user’s feedback using relevance feedback.138

Finally, since our focus is to produce low-dimensional descriptors, which improve139

both the retrieval time and the memory requirements, we apply our method on140

convolutional layers using max-pooling techniques, as opposed to the previous141

methodologies which utilize the fully-connected layers.142

3. Proposed Method143

In this work we consider image and video retrieval applications that should be144

employed in machines with restricted resources in terms of memory and computa-145

tional power, such as drones, robots, smartphones and other embedded systems.146

In these cases, there are restrictions in terms of memory (e.g. only 2 Gb of147

RAM in current state of the art GPUs for embedded systems) and in terms of148

computational power (e.g. restricted number of processing cores in GPUs) since149
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energy efficiency and compactness constitutes a major issue. For the above rea-150

sons current deep learning architectures that use a huge number of parameters151

are inappropriate to be used in such applications even if the training procedure is152

performed offline. For example, in the context of the media coverage of a certain153

event with drones, a desirable operation would be to retrieve and show relevant154

images to the ones captured from the drones of points of particular interest (e.g.155

landmark buildings, monuments). This application would impose smaller and156

faster architectures that could be deployed easier on-drone.157

158

Towards this end, we exploit the ability of a deep CNN to modify its in-159

ternal structure, and we propose a model retraining method that suggests three160

approaches relying on the available information, aiming at producing efficient161

low-dimensional image representations for the retrieval task, which improve both162

the retrieval performance and the memory requirements.163

We utilize the BVLC Reference CaffeNet model1, which is an implementation164

of the AlexNet model trained on the ImageNet Large Scale Visual Recognition165

Challenge (ILSVRC) 2012 to classify 1.3 million images to 1000 ImageNet classes,166

[18]. The model consists of eight trained neural network layers; the first five167

are convolutional and the remaining three are fully connected. Max-pooling168

layers follow the first, second and fifth convolutional layers, while the ReLU non-169

linearity ( f (x) = max(0, x) ) is applied to every convolutional and fully connected170

layer, except the last fully connected layer (denoted as FC8). The output of the171

FC8 layer is a distribution over 1000 ImageNet classes. The softmax loss is used172

during the training. An overview of the CaffeNet architecture is provided in Fig.173

1.174

1https://github.com/BVLC/caffe/tree/master/models/bvlc_reference_caffenet
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Figure 1: Overview of the CaffeNet Architecture

In general, the neural network accepts an RGB image as a three dimensional175

tensor of dimensions W1 × H1 × D1. Subsequently three dimensional filters are176

learned and applied in each layer where convolution is performed, and output177

a three dimensional tensor of dimensions W2 × H2 × D2, where D2 is equal to178

the number of filters. The two-dimensional feature maps W2 × H2, contain the179

responses of each filter at every spatial position. We employ the CaffeNet model180

to directly extract feature representations from a certain convolutional layer. We181

consider the activations after the ReLU layer. Since the representations obtained182

from a CNN model for a set of input images are adjustable by modifying the183

weights of the model, we retrain the parameters of the layer of interest relying184

on the available information. To this aim, we adapt the pretrained model by185

removing the layers following the convolutional layer utilized for the feature186

extraction, and we add an extra pooling layer, the so-called Maximum Activations187

of Convolutions (MAC) layer, which implements the max-pooling operation over188

the width and height of the output volume, for each of the D2 feature maps, [33].189

Subsequently, we use the representations obtained from the MAC layer in order190

to build the new target representations for each image according to the retraining191

scheme, and we retrain the neural network using the Euclidean Loss for the192

formulated regression task. The retargeting procedure for each of the proposed193

approaches is described in the following subsections.194

As mentioned previously, the proposed method utilizes the convolutional lay-195
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ers for the feature extraction, against the fully-connected ones [44]. The underly-196

ing reasons behind this follow below. First, by definition the convolutional layers197

preserve spatial information due to the spatial arrangement of the activations, as198

opposed to the fully-connected ones which discard it since they are connected to199

all the input neurons. Furthermore, usually the fully-connected layers of CNNs200

occupy the most of the parameters, for instance, the fully-connected layers of201

the utilized network contain 59M parameters out of a total of 61M parameters,202

whereas in VGG [45] the fully connected layers contain 102M parameters out of a203

total of 138M parameters. Thus, by discarding the fully-connected portion of the204

network we drastically reduce the amount of the parameters and consequently we205

restrict the storage requirements and the computational cost. Furthermore, this206

modification also allows arbitrary-sized input images, since the fixed-length input207

requirement concerns the fully-connected layers, and hence this allows for using208

low-resolution images, which can be very useful in order to make our application209

to comply with the limitations of various embedded systems, since it can further210

restrict the computational cost. The advantages of the fully convolutional neural211

networks are also discussed in [46]. Finally, we should also note that state-of-212

the-art algorithms in the object detection task, like YOLO9000 [47] and SSD [48],213

also use fully convolutional architectures, in order to improve the detection speed.214

More specifically, in our experiments we use either the last convolutional215

layer, denoted as CONV5, or the forth convolutional layer denoted as CONV4.216

The dimension of the CONV5 layer is 13× 13× 256 features, while the dimension217

of the CONV4 layer is 13× 13×384 features. Thus, the MAC layer outputs either218

a 256-dimensional coarse detailed feature representation, or a 384-dimensional219

fine-detailed one, for each image, based on the utilized convolutional layer.220

The proposed retraining method is schematically described in Fig. 2.221
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Figure 2: The proposed retraining method.

We should note that various pooling methods could also be used in the pro-222

posed approach. Some works in the literature utilize sum-pooling for aggregating223

the convolutional features to compact descriptors (e.g. [31]), while other use max-224

pooling (e.g. [33]). In our investigation we found that max-pooling is superior225

over sum and stochastic pooling. For example, in Table 1 we show the base-226

line CaffeNet’s results on the CONV5 layer for different pooling methods, in the227

UKBench-2 dataset. This is consistent with [31], which states that max-pooling228

achieves better performance, as compared to sum-pooling, while sum-pooling per-229

forms better only when the feature descriptors are PCA-whitened. These obser-230

vations are also drawn in [32, 33].231

The three basic proposed retraining approaches are presented in detail in the232

following subsection.233

3.1. Fully Unsupervised Retraining234

In the FU approach, we aim to amplify the primary retrieval presumption that235

the relevant image representations are closer to the certain query representation236
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in the feature space. The rationale behind this approach is rooted to the cluster237

hypothesis which states that documents in the same cluster are likely to satisfy238

the same information need [49]. That is, we retrain the pretrained CNN model on239

the given dataset, aiming at maximizing the cosine similarity between each image240

representation and its n nearest representations, in terms of cosine distance.241

Let us denote by I = {Ii, i = 1, . . . ,N} the set of N images to be searched, by

X = {xi, i = 1, . . . ,N} their corresponding feature representations emerged in the L

layer, and by µi the mean vector of the n ∈ {1, . . . ,N − 1} nearest representations

to xi, denoted as Xi = {xi
l, l = 1, . . . ,N − 1}. That is,

µi =
1
n

n∑
l=1

xi
l (1)

The new target representations for the images of I can be determined by242

solving the following optimization problem:243

max
xi∈X
J = max

xi∈X

N∑
i=1

xᵀi µ
i

‖xi‖ ‖µi‖
(2)

We solve the above optimization problem using gradient descent. The first-244

order gradient of the objective function J is given by:245

∂J

∂xi
=

∂

∂xi

 N∑
i=1

xᵀi µ
i

‖xi‖ ‖µi‖

 = µi

‖xi‖ ‖µi‖
−

xᵀi µ
i

‖xi‖
3 ‖µi‖

xi (3)

The update rule for the v -th iteration for each image can be formulated as:246

x(v+1)
i = x(v)

i + η

 µi

‖x(v)
i ‖ ‖µ

i‖
−

x(v)ᵀ
i µ

i

‖x(v)
i ‖

3 ‖µi‖
x(v)

i

 , xi ∈ X (4)

Finally, we introduce a normalization step, in order to control better the247

learning rate, as follows:248

x(v+1)
i = x(v)

i + η‖x
(v)
i ‖ ‖µ

i‖

 µi

‖x(v)
i ‖ ‖µ

i‖
−

x(v)ᵀ
i µ

i

‖x(v)
i ‖

3 ‖µi‖
x(v)

i

 , xi ∈ X (5)

Using the above representations as targets in the layer of interest, we formu-249

late a regression task for the neural network, which is initialized on the CaffeNet’s250
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weights and is trained on the utilized dataset, using back-propagation. The Eu-251

clidean loss is used during training for the regression task. Thus, the procedure252

is integrated by feeding the entire dataset into the input layer of the retrained253

adapted model and obtaining the new representations.254

3.2. Retraining with Relevance Information255

In this approach we propose to enhance the performance of the deep CNN256

descriptors exploiting the relevance information deriving from the available class257

labels. To achieve this goal, considering a labelled representation (xi, yi), where258

xi is the image representation and yi is the corresponding image label, we adapt259

the convolutional neural layers of the CNN model used for the feature extraction,260

aiming to maximize the cosine similarity between xi and the m nearest relevant261

representations, and simultaneously to minimize the cosine similarity between262

xi and the l nearest irrelevant representations, in terms of cosine distance. We263

define as relevant the images belonging to same class, while as irrelevant the264

images belonging to different classes.265

Let I = {Ii, i = 1, . . . ,N} be a set of N images of the search set provided with266

relevance information, and x = FL(I) the output of the L layer of the pretrained267

CNN model on an input image I. Then we denote by X = {xi, i = 1, . . . ,N} the set268

of N feature representations emerged in the L layer, by Ri = {rk, k = 1, . . . ,Ki} the269

set of Ki relevant representations of the i-th image and by Ci = {c j, j = 1, . . . , Li}270

the set of Li irrelevant representations. We compute the mean vector of the m271

nearest representations of Ri to the certain image representation xi, and the mean272

vector of the l nearest representations of Ci to xi , and we denote them by µi
+273

and µi
− , respectively. Then, the new target representations for the images of I274

can be determined by solving the following optimization problems:275

max
xi∈X
J+ = max

xi∈X

N∑
i=1

xᵀi µ
i
+

‖xi‖ ‖µi
+‖
, (6)

min
xi∈X
J− = min

xi∈X

N∑
i=1

xᵀi µ
i
−

‖xi‖ ‖µi
−‖
, (7)
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The normalized update rules for the v-th iteration can be formulated as:276

x(v+1)
i = x(v)

i + ζ1‖x
(v)
i ‖ ‖µ

i
+‖

 µi
+

‖x(v)
i ‖ ‖µ

i
+‖
−

x(v)ᵀ
i µ

i
+

‖x(v)
i ‖

3 ‖µi
+‖

x(v)
i

 , xi ∈ X (8)

and

v(v+1)
i = x(v)

i − β1‖x(v)
i ‖ ‖µ

i
−‖

 µi
−

‖x(v)
i ‖ ‖µ

i
−‖
−

x(v)ᵀ
i µ

i
−

‖x(v)
i ‖

3 ‖µi
−‖

x(v)
i

 , xi ∈ X (9)

277

Consequently, the combinatory normalized update rule, deriving by adding the278

equations (8) and (9) can be formulated as:279

x(v+1)
i = x(v)

i + ζ‖x
(v)
i ‖ ‖µ

i
+‖

 µi
+

‖x(v)
i ‖ ‖µ

i
+‖
−

x(v)ᵀ
i µ

i
+

‖x(v)
i ‖

3 ‖µi
+‖

x(v)
i


−β‖x(v)

i ‖ ‖µ
i
−‖

 µi
−

‖x(v)
i ‖ ‖µ

i
−‖
−

x(v)ᵀ
i µ

i
−

‖x(v)
i ‖

3 ‖µi
−‖

x(v)
i

 , xi ∈ X

(10)

Thus, as in the previous approach, using the above target representations we280

retrain the neural network on the images provided with relevance information281

using backpropagation.282

3.3. Relevance Feedback Based Retraining283

The idea of this proposed approach is rooted in the relevance feedback phi-284

losophy. In general, relevance feedback refers to the ability of users to impart285

their judgement regarding the relevance of search results to the system. Then,286

the system can use this information to ameliorate its performance [50, 51]. In287

this proposed retraining approach we consider information from different users’288

feedback. This information consists of queries and relevant and irrelevant images289

to these queries. Then, our goal is to modify the model parameters in order to290

maximize the cosine similarity between a specific query and its relevant images291

and minimize the cosine similarity between it and its irrelevant ones.292

Let us denote by Q = {Qk, k = 1, . . . ,K} a set of queries, Ik
+ = {Ii, i = 1, . . . ,Z}293

a set of relevant images to a certain query, by Ik
− = {I j, j = 1, . . . ,O} a set of294

irrelevant images, by x = FL(I) the output of the L layer of the pretrained CNN295
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model on an input image I, and by q = FL(Q) the output of the L layer on a296

query. Then we denote by Xk
+ = {xi, i = 1, . . . ,Z} the set of feature representations297

emerged in L layer of Z images that have been qualified as relevant by a user,298

and by Xk
− = {x j, j = 1, . . . ,O} the set of O irrelevant feature representations.299

The new target representations for the relevant and irrelevant images can be300

respectively determined by solving the following optimization problems:301

max
xi∈X

k
+

J+ = max
xi∈X

k
+

Z∑
i=1

xᵀi qk

‖xi‖ ‖qk‖
, (11)

min
x j∈X

k
−

J− = min
x j∈X

k
−

O∑
j=1

xᵀj qk

‖x j‖ ‖qk‖
, (12)

The normalized update rules for the v-th iteration can be formulated as:302

x(v+1)
i = x(v)

i + α‖x
(v)
i ‖ ‖q

k‖

 qk

‖x(v)
i ‖ ‖qk‖

−
x(v)ᵀ

i qk

‖x(v)
i ‖

3 ‖qk‖
x(v)

i

 , xi ∈ X
k
+ (13)

and

x(v+1)
j = x(v)

j − α‖x
(v)
j ‖ ‖q

k‖

 qk

‖x(v)
j ‖ ‖qk‖

−
x(v)ᵀ

j qk

‖x(v)
j ‖

3 ‖qk‖
x(v)

j

 , x j ∈ X
k
− (14)

303

Similar to the other approaches, using the above representations as targets in304

the layer of interest, we retrain the neural network on the set of relevant and305

irrelevant images.306

4. Experiments307

In this Section we present the experiments conducted in order to assess the308

performance of the proposed method. Firstly, a brief description of the evaluation309

metrics and the datasets is provided. Subsequently, we describe the experimental310

details of each approach, and finally we demonstrate the experimental results.311
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4.1. Evaluation Metrics312

Throughout this paper we use 4 evaluation metrics: precision, recall, mean313

Average Precision (mAP), and top-N score. The definitions of the above metrics314

follow below:315

Precision =
n. of Relevant Retrieved Images

n. of Retrieved Images
(15)

Recall =
n. of Relevant Retrieved Images

n. of Relevant Images
(16)

Mean Average Precision is the mean value of the Average Precision (AP) of316

all the queries. The definition of AP for the i -th query is formulated as follows:317

APi =
1

Qi

N∑
n=1

Rn
i

n
ti
n, (17)

where Qi is the total number of relevant images for the i -th query, N is the318

total number of images of the search set, Rn
i is the number of relevant retrieved319

images within the n top results; ti
n is an indicator function with ti

n = 1 if the n -th320

retrieved image is relevant to the i -the query, and ti
n = 0 otherwise.321

Finally, top-N score refers to the average number of same-object images,322

within the top-N ranked images.323

4.2. Datasets324

Paris 6k [52]: consists of 6392 images (20 of the 6412 provided images325

are corrupted) collected from Flickr by searching for particular Paris landmarks.326

The collection has been manually annotated to generate a comprehensive ground327

truth for 11 different landmarks, each represented by 5 possible queries. Images328

are assigned one of four possible queries: good, ok, junk and absent. Good329

and ok images are considered as positive examples, absent as negative examples330

while junk images as null examples. Following the standard evaluation protocol331

we measure the retrieval performance in mAP. Like in most CNN-based works332

[28, 27, 29, 34, 31] we use the full queries for the retrieval. The query images are333
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not considered in the search set in the retrieval procedure, and neither used in334

the phase of model retraining. We show some example images in Fig. 3.335

Figure 3: Sample images of the Paris 6k dataset

UKBench [53]: contains 10200 images of objects divided into 2550 classes.336

Each class consists of 4 images. All 10200 images are used as queries. The337

performance is reported as top-4 score, which is a number between 0 and 4.338

Samples are provided in Fig. 4.339

Figure 4: Sample images of the UKBench dataset

UKBench-2: since our method performs learning and the UKBench dataset340

does not provide a discrete set of queries, we hold out one image per class,341

forming a search set of 7650 images and a set of 2550 queries. As in UKBench,342

we use the top-3 score for the evaluation, which is a number between 0 and 3.343

4.3. Experimental Setup344

The proposed method was implemented using the Caffe Deep Learning frame-345

work, [54]. As mentioned before, in our experiments we utilize either the CONV5346
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or the CONV4 layer for the feature extraction. Additionally, in the model retrain-347

ing phase we replace the ReLU layer, that follows the utilized convolutional layer348

with a PRELU layer [55] which is initialized randomly. Furthermore, since the349

first layers of CaffeNet trained on ImageNet learned more generic feature repre-350

sentations, all the previous convolutional layers remain unchanged, and we train351

only the layer of interest, restricting significantly the training cost. Finally, we352

use the adaptive moment estimation algorithm (Adam) [56], instead of the simple353

gradient descent for the network optimization, with the default parameters. All354

results obtained using cosine distance.355

In Table 1 we present the results of our investigation regarding the pooling356

methods. That is, we report the top-3 Score for UKBench-2 dataset on the CONV5357

layer, using different pooling methods. As it is shown the max-pooling attains358

superior performance over the sum and stochastic pooling.359

Pooling Method Score

Max 2.615

Sum 2.50

Stochastic 2.572

Table 1: UKBench-2: Top-3 Score for various pooling methods

We note that we can also utilize other distance metrics. Existing CBIR ap-

proaches usually use either cosine distance, e.g. [29, 36], or Euclidean distance

[27, 28]. We also conducted experiments using the Euclidean distance. The choice

of the distance metric, affects the optimization objective for the retargeting proce-

dure. That is, if we consider the Euclidean distance e.g. in the FU approach, the

optimization problem of (2), is replaced by the following one:

min
xi∈X
J = min

xi∈X

N∑
i=1

‖xi − µi‖
2
2 (18)

Hence, following the gradient, the update rule for the v-th iteration for each

image can then be formulated as:

x(v+1)
i = x(v)

i − 2η(x(v)
i − µi), xi ∈ X (19)
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where the parameter η ∈ [0, 0.5] controls the desired distance from the n nearest360

representations.361

Correspondingly, the update rule for the v-th iteration for each image, for the

RRI approach is given by the equation:

x(v+1)
i = x(v)

i − (1 − β)(x(v)
i − µ

i
+) + β(x(v)

i − µ
i
−), xi ∈ X (20)

where the parameter β = 1 − ζ, ∈ [0, 1] controls the desired distance both from the362

relevant and the irrelevant representations.363

Finally, the update rules for the v-th iteration for each image, for the RF

approach are given by the following equations:

x(v+1)
i = x(v)

i − 2α(x(v)
i − qk), xi ∈ X

k
+ (21)

and

x(v+1)
j = x(v)

j + 2α(x(v)
j − qk), x j ∈ X

k
− (22)

where the parameter α ∈ [0, 0.5] controls the desired distance from the query364

representation.365

The baseline CaffeNet’s results on the CONV5 layer utilizing the Euclidean366

distance is 0.5227 against 0.5602 in Paris 6k dataset, and 2.5286 against 2.6154367

in UKBench-2 dataset. We also applied the proposed FU approach on the CONV5368

layer, setting the same parameters, on both the UKBench-2 and Paris 6k datasets.369

The experimental results are illustrated in Fig. 5, 6. As we can observe the cosine370

similarity attains superior performance over the Euclidean distance in both the371

considered cases.372

373

In the following we present the selected parameters for each of the proposed374

approaches.375

4.3.1. Fully Unsupervised376

First, in the UKBench-2 dataset, we fix the number of nearest representations,377

n, in (1) to 1 and the retargeting step to 2000 iterations, and we examine the378

effect of the parameter η in (5). Thus, in Fig. 7 we illustrate the top-3 Score at379
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Figure 6: Paris 6k: Comparison of Euclidean and

Cosine distances, on the FU approach on CONV5

layer

each iteration of the training process for different values of η. Next, we fix the380

parameter η to 0.6, and we perform experiments for different numbers of nearest381

representations, n. Experimental results are shown in Fig. 8. Finally, for fixed382

values of η and nearest representations, we vary the step of retargeting. That is,383

we re-determine the targets for the model retraining, (5), with a certain step of384

iterations. The experimental results are illustrated in Fig. 9. Thus, we set the385

value η to 0.6, the number of nearest representations to 1, and the retargeting step386

to 1000 iterations. The same parameters are also used in the UKBench dataset.387

Finally, in the Paris 6k dataset, we also set the parameter η in (5) to 0.6 and for388

fixed retargeting step set of 2000 iterations, we examine the appropriate number389

of nearest representations. Experimental results are shown in Fig. 10. Then, for390

the optimal number of nearest representations, we examine the retargeting step.391

Experimental results are shown in Fig. 11. Hence, in Paris 6k dataset we set the392

value η to 0.6, the number of nearest representations to 20, and the retargeting393

step to 1000 iterations. Regarding the number of the nearest representations,394

n, in many datasets it is bounded by the number of samples that are available.395

For example, in the UKBench-2 the limit for the value of n is 2, since there are396

only three samples per class. Thus, in Fig. 8, we observe that when the value n397

exceeds the number of images per class, the performance drops. In the case of398
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Paris 6k dataset, where there are more samples available, we see in Fig.10 that399

the performance improves, as the value of n increases. However, an increased400

value of the parameter n comes with the cost of finding the n nearest neighbors of401

each training sample. For a big dataset this cost is critical, but it can be reduced402

using approximate nearest neighbor techniques. However, this research direction403

is beyond the scope of this work. Consequently, for a totally unknown dataset an404

investigation for the value of n between 5 and 10 is a good compromise, however405

there is also the most safe choice of setting the value 1, which improves the406

performance in any case.407

4.3.2. Retraining with Relevance Information408

In the experiments of this approach, since the number of relevant represen-409

tations varies meaningfully across datasets, we formulate the new target repre-410

sentations for the model retraining with respect to each relevant and 5 nearest411
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irrelevant images of each image. The retargeting step is set to 2000 iterations,412

the parameter ζ in (10) is set to 0.8, and the parameter β is set to 0.2.413

4.3.3. Relevance Feedback based Retraining414

In the experiments that conducted to validate the performance of the Rele-415

vance Feedback based approach, we consider for each of 2550 different users 1416

relevant and 1 irrelevant images for the UKBench-2 dataset, which forms a train-417

ing set of 5100 images. In Paris 6k dataset, 40 relevant (or equal to the number of418

relevant, if less) and 40 irrelevant images are considered for each of 55 different419

users. The parameter α in (13), (14) is set to 0.5.420

4.4. Experimental Results421

Feature Representation Dimension Score

1 CaffeNet ⇒ CONV4 384 3.3608

2 CaffeNet −→ FU(CONV4) ⇒ CONV4 384 3.6999

3 CaffeNet −→ RRI(CONV4) ⇒ CONV4 384 3.9122

4 CaffeNet −→ FU(CONV4) −→ RRI(CONV4) ⇒ CONV4 384 3.9511

5 CaffeNet ⇒ CONV5 256 3.5595

6 CaffeNet −→ FU(CONV5) ⇒ CONV5 256 3.8323

7 CaffeNet −→ RRI(CONV5) ⇒ CONV5 256 3.8941

8 CaffeNet −→ FU(CONV5) −→ RRI(CONV5) ⇒ CONV5 256 3.9710

Table 2: UKBench

We illustrate the evaluation results for the three basic model retraining ap-422

proaches, as well as for the combinatory ones, where the RRI and RF approaches423

are applied on the FU optimized model.424

In the following we denote by CONV5 and CONV4 the feature representations425

obtained from the CONV5 and CONV4 layer of the CNN model respectively. We426

denote by FU(LT ) the fully unsupervised retraining on the layer LT with target427

representations obtained from the LT layer, by RRI(LT ) the retraining with rele-428

vance information on the layer LT with target representations obtained from the429
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Feature Representation Dimension Score

1 CaffeNet ⇒ CONV4 384 2.4389

2 CaffeNet −→ FU(CONV4) ⇒ CONV4 384 2.70

3 CaffeNet −→ RRI(CONV4) ⇒ CONV4 384 2.8624

4 CaffeNet −→ RF(CONV4) ⇒ CONV4 384 2.4792

5 CaffeNet −→ FU(CONV4) −→ RRI(CONV4) ⇒ CONV4 384 2.9058

6 CaffeNet −→ FU(CONV4)−→ RF(CONV4) ⇒ CONV4 384 2.7627

7 CaffeNet ⇒ CONV5 256 2.6154

8 CaffeNet −→ FU(CONV5) ⇒ CONV5 256 2.8106

9 CaffeNet −→ RRI(CONV5) ⇒ CONV5 256 2.8831

10 CaffeNet −→ RF(CONV5) ⇒ CONV5 256 2.72

11 CaffeNet −→ FU(CONV5) −→ RRI(CONV5) ⇒ CONV5 256 2.9086

12 CaffeNet −→ FU(CONV5) −→ RF(CONV5) ⇒ CONV5 256 2.8361

Table 3: UKBench-2

LT layer, and correspondingly by RF(LT ) the relevance feedback based retraining.430

We use consecutive arrows to describe the retraining pipeline of our approaches,431

and the implication arrow to show the final feature representation employed for432

the retrieval procedure. Thus, CaffeNet ⇒ CONV5 implies that we obtain the433

CONV5 representations from the CaffeNet model and we use them for the re-434

trieval procedure, while CaffeNet −→ RRI(CONV4) ⇒ CONV4 denotes that we435

formulate the target representations using the features emerged in the CONV4436

CaffeNet layer and we retrain with relevance information the CONV4 layer of437

the CaffeNet, then we extract the CONV4 representations of the modified model,438

and we use them for the retrieval.439

Tables 2 - 4 summarize the experimental results on all the datasets. The440

best performance is printed in bold. From the provided results several remarks441

can be drawn. Firstly, we observe that each retraining approach improves the442

baseline results of CaffeNet in all the used datasets. Furthermore, we can no-443

tice that in all the datasets the CONV5 retraining achieves better performance.444
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Feature Representation Dimension mAP

1 CaffeNet ⇒ CONV4 384 0.4589

2 CaffeNet −→ FU(CONV4) ⇒ CONV4 384 0.7337

3 CaffeNet −→ RRI(CONV4) ⇒ CONV4 384 0.9837

4 CaffeNet −→ RF(CONV4) ⇒ CONV4 384 0.6325

5 CaffeNet −→ FU(CONV4) −→ RRI(CONV4) ⇒ CONV4 384 0.9715

6 CaffeNet −→ FU(CONV4) −→ RF(CONV4) ⇒ CONV4 384 0.8030

7 CaffeNet ⇒ CONV5 256 0.5602

8 CaffeNet −→ FU(CONV5) ⇒ CONV5 256 0.8347

9 CaffeNet −→ RRI(CONV5) ⇒ CONV5 256 0.9854

10 CaffeNet −→ RF(CONV5) ⇒ CONV5 256 0.7101

11 CaffeNet −→ FU(CONV5) −→ RRI(CONV5) ⇒ CONV5 256 0.9859

12 CaffeNet −→ FU(CONV5) −→ RF(CONV5) ⇒ CONV5 256 0.9023

Table 4: Paris 6k

Additionally, we observe that the FU approach accomplishes remarkable results,445

while in UKBench dataset this approach leads to state-of-the-art performance.446

We also see that the other proposed methodologies applied on the modified via447

the FU approach model indeed yield better retrieval results, as compared to the448

CaffeNet’s employment, in any considered case except for the CONV4 modifi-449

cation in Paris 6k dataset. Finally, we can observe that refined with relevance450

information model accomplishes state-of-the-art performance in all the datasets,451

while the relevance-feedback based model achieves considerably improved results452

in all the used datasets.453

More specifically, in Table 2 we show the experimental results of the proposed454

retraining approaches in the UKBench dataset. First, we see that the baseline Caf-455

feNet’s performance of the CONV5 representations is superior over the CONV4456

one. Furthermore we observe that both the RRI and FU approaches improve sig-457

nificantly the baseline performance, and also the RRI achieves better results than458

the FU one, which is reasonable since the FU approach utilizes no information459
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for the model retraining. Finally we can see that the FU pretraining step boosts460

the performance of the RRI approach on both the CONV5 and CONV4 layers.461

Similar remarks can be drawn for the UKBench-2 dataset, in Table 3. Re-462

garding the RF approach, we can see in the 4th and 10th rows that the method463

indeed improves the CaffeNet retrieval results on both the CONV5 and CONV4464

layers, but we observe that the improvement of the RF approach is not as notable465

as the FU and RRI ones. We attribute this to the comparatively small training466

set of the RF approach (5100 against 10200 images). In general, the number467

of the relevant and irrelevant images that create the new dataset for the model468

retraining, appears to be the key factor of the RF improvement.469

Finally, in Table 4 we illustrate the experimental results on the Paris 6k470

dataset. As previously, it is shown that the proposed approaches improve the471

CaffeNet retrieval results. It is also shown, that the RRI approach in a single472

training step can accomplish state-of-the-art performance (9th row). The FU re-473

training scheme boosts the RF results, while in the case of the RRI retraining on474

the FU modified model, the results are marginally improved for the CONV5 layer475

(9th and 11th rows), and are slightly inferior for the CONV4 (3rd and 5th rows).476

Finally, we observe that the RF approach performs comparatively poorly.477

In Fig. 12 we provide the Precision-Recall curves of all the considered ap-478

proaches for the Paris 6k datasets, utilizing the CONV5 layer. It is shown that479

the proposed approaches can indeed achieve significantly enhanced results against480

the baseline. It is also shown that the RF approach applied on the FU modified481

model can accomplish considerably improved performance as compared to the482

RF approach on the CaffeNet model, while this is not confirmed in the case of483

the RRI approach on the FU retrained model, where the performance is almost484

identical.485

In Fig. 13,14 we provide some examples of the top three retrieved images486

for certain queries of UKBench-2 dataset, using the baseline CONV5 CaffeNet’s487

features, and features obtained from our FU and RRI on FU retrained models488

respectively. As it is illustrated, the proposed approaches improve the retrieval489

results. Additionally we can see in the third example of the two figures that490
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the FU retrained model returns two out of three relevant images, while the RRI491

approach applied on the FU one, returns all the relevant images to the specific492

query.493

Finally, we compare our method against other CNN-based, as well as hand-494

crafted feature-based methods, on image retrieval. First, we provide a comparison495

against methods that utilize supervised learning with the proposed RRI approach,496

which utilizes supervised learning too, in Table 5. Second, we compare the pro-497

posed FU approach against other methods that do not utilize supervised learning498

in Table 6. Since the proposed RF approach is novel, and the competitive methods499

do not utilize information derived from users’ feedback, the results are reported500

only in Tables 3-4, and we do not include it in the comparisons. We compare501

our method with the competitive ones, regardless the dimension of the compared502

feature representations. We also note that among the provided results, there are503

methods, that use information from multiple regions of the image, as in the case504

of R-MAC, [33], and Deep Image Retrieval [35]. To the best of our knowledge, the505

proposed method outperforms every other competitive method. Methods marked506

with * use the cropped queries in Paris 6k dataset.507
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Figure 13: For each of the three sets of images the query image is the first one of the top row and the

images that follow in the top row are the first 3 retrieved using the baseline CONV5 representation.

The top 3 retrieved images using the FU approach on the CONV5 layer are shown in the second row

for the same query

26



Figure 14: For each of the three sets of images the query image is the first one of the top row and the

images that follow in the top row are the first 3 retrieved using the baseline CONV5 representation.

The top 3 retrieved images using the FU→RRI approach on the CONV5 layer are shown in the second

row for the same query
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Method Dim Paris 6k UKBench

Neural Codes [27] 4096 - 3.56

Neural Codes [27] 256 - 3.35

ReDSL.FC1 [29] 4096 0.9474 -

Deep Image Retrieval [35] 512 0.871 -

Ours 256 0.9859 3.9710

Table 5: Comparison against other supervised methods

Method Dim Paris 6k UKBench

CVLAD* [57] 64k - 3.62

BOW * [58] 200k 0.46 2.81

CNNaug-ss [28] 4k-15k 0.795 3.644

Spoc [31] 256 - 3.65

Fine-residual VLAD [8] 256 - 3.43

Multi-layer [37] 100k - 3.69

CNN-VLAD [34] 128 0.694 -

R-MAC* [33] 512 0.83 -

R-MAC* [33] 256 0.729 -

CroW* [32] 256 0.765 -

CRB-CNN-16 [38] 512 - 3.56

Ours 256 0.8347 3.8323

Table 6: Comparison against other unsupervised methods

5. Conclusions508

In this paper we proposed a model retraining methodology for enhancing the509

deep convolutional representations in the retrieval domain. The proposed method510

suggests three retraining approaches relying on the available information. Thus,511

if no information is available, the Fully Unsupervised retraining approach is pro-512

posed, if the labels are available the Retraining with Relevance Information, and513

finally if users’ feedback is available the Relevance Feedback based retraining is514
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proposed. We utilize a deep CNN model to obtain the convolutional representa-515

tions and build the target representations according to each approach, and then516

we retrain appropriately the network’s weights. We also proposed a combinatory517

retraining strategy, where the FU retraining approach can be utilized as a pre-518

training step in order to boost the performance of the RRI and RF approaches. We519

note that all the proposed approaches are applicable to the fully connected layers520

too, as well as to other CNN architectures. We should also note that the proposed521

methodology is applicable to any other CNN-based image retrieval method that522

utilizes a CNN model to directly extract feature representations. Experimental re-523

sults indicate the effectiveness of our method, with superior performance over the524

state of the art approaches, either via a single retraining approach, or by utilizing525

successive retraining processes.526
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