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Abstract

Knowledge Distillation has been established as a highly promising approach

for training compact and faster models by transferring knowledge from more

heavyweight and powerful models, so as to satisfy the computation and stor-

age requirements of deploying state-of-the-art deep neural models on embedded

systems. However, conventional knowledge distillation requires multiple stages

of training rendering it a computationally and memory demanding procedure.

In this paper, a novel single-stage self knowledge distillation method is pro-

posed, namely Online Subclass Knowledge Distillation (OSKD), that aims at

revealing the similarities inside classes, improving the performance of any deep

neural model in an online manner. Hence, as opposed to existing online distil-

lation methods, we are able to acquire further knowledge from the model itself,

without building multiple identical models or using multiple models to teach

each other, rendering the OSKD approach more effective. The experimental

evaluation on five datasets indicates that the proposed method enhances the

classification performance, while comparison results against existing online dis-

tillation methods validate the superiority of the proposed method.
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1. Introduction

Deep Learning (DL) models (Deng, 2014), have been extensively used dur-

ing the recent years in order to resolve a wide spectrum of visual analysis tasks,

overthrowing previous solutions (Guo et al., 2016; Araque et al., 2017; Redmon

& Farhadi, 2017; Graves et al., 2013; Nweke et al., 2018; Do et al., 2019). Gen-

erally, DL models owe their outstanding performance to their depth and com-

plexity. This significantly hampers the applicability of state-of-the-art models

on devices with limited computational resources, such as embedded systems

or mobile phones, reasonably introducing a challenging demand for develop-

ing compact yet effective models, diminishing the storage requirements and the

computational cost.

Several solutions have been proposed during the recent few years to accom-

plish this goal (Cheng et al., 2017). For example, considerable research has

been performed on developing compact and effective models by design so as to

satisfy the memory and computation requirements and at the same time retain

accuracy at high levels, (Howard et al., 2017; Zhang et al., 2018a; Sandler et al.,

2018; Iandola et al., 2016; Han et al., 2016; Huang et al., 2018). Another line of

research includes the parameter pruning, where the redundancy in the parame-

ters of the model is investigated and the complexity of the model is reduced by

removing the redundant parameters (Srinivas & Babu, 2015; Molchanov et al.,

2017). Similarly, network quantization removes the number of bits for the pa-

rameter representation in order to compress the model (Wu et al., 2016; Han

et al., 2016). Finally, Knowledge Distillation (KD) (also known as Knowledge

Transfer) (Hinton et al., 2015; Romero et al., 2014; Buciluǎ et al., 2006; Ba

& Caruana, 2014; Chen et al., 2016; Chan et al., 2015; Tang et al., 2016; Pas-

salis & Tefas, 2018; Passalis & Tefas, 2019; Kim et al., 2018) has been emerged

as a highly promising approach to settle this issue proposing to transfer the

knowledge from one, usually larger, model to a more compact model.

KD methods fall into two broad categories: online and offline KD. Offline

KD refers to the multistage process of training first a heavyweight and com-
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plex model, known as teacher, which accomplishes high performance, and then

transferring the knowledge to a more compact and faster model, known as stu-

dent. More specifically, the student model is trained to regress the so-called

soft labels, produced by softening the output distribution of the teacher model,

that is by raising the temperature of the softmax activation function on the

output layer of the teacher model. The motivation behind this practice, is that

these soft labels, as opposed to the hard labels, can uncover information of the

model’s generalization mechanism, aiming at implicitly recovering similarities

over the data. Amongst KD methods, a distinct subcategory is the so-called

self-distillation, where the knowledge is transferred from teachers to students of

identical capacity (Furlanello et al., 2018; Lan et al., 2018).

Conventional offline KD is a research topic that has been flourishing in the

recent years with a broad spectrum of applications ranging from classification

(Mirzadeh et al., 2019; Passalis & Tefas, 2018) and semantic segmentation (Liu

et al., 2019), to visual question answering (Mun et al., 2018) and top-N recom-

mendation (Pan et al., 2019, 2020a,b; Zhang & He, 2020).

However, offline KD is inherently accompanied by some major limitations.

That is, offline distillation requires a two-step sequential training process which

cannot be parallelized. As a result, offline distillation often doubles the train-

ing time, which could discourage the use of such methods in practice. Thus,

another line of research attempts to mitigate these flaws by developing distilla-

tion methods that simplify the training pipeline to a single stage. That is, the

so-called online KD describes the procedure where the teacher and the student

networks are trained simultaneously, that is by omitting the stage of pretraining

the teacher network. For instance, a recent online KD includes work proposes

to train multiple models mutually from each other (Zhang et al., 2018b), while

another approach proposes to create ensembles of multiple identical branches

of a target network in order to build a strong teacher and distill the knowledge

from the teacher to the target network (lan et al., 2018).

It is noteworthy, as explained in lan et al. (2018) online distillation is able

to readily scale up and parallelize the training process with virtually no effort
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and communication overhead, often matching the theoretical speedup (2×).

Also, apart from this, online distillation often allows for training more accurate

models compared to offline distillation, since at any given time, the gap between

the student and teacher model will be smaller compared to offline distillation

Mirzadeh et al. (2019).

Furthermore, in (Furlanello et al., 2018) it is demonstrated that useful in-

formation about the similarities of the samples with the classes can be obtained

even by transferring the knowledge through the class probability distribution

from a teacher network of identical capacity to student. In addition, in (Ba &

Caruana, 2014) it is demonstrated that small networks usually have the same

representation capacity as large networks, however they are harder to train,

compared to large networks. Therefore, taking these observations into consid-

eration a question that arises is how can someone efficiently train small yet

effective networks, deriving additional information beyond the hard labels from

the model itself and also in an online manner.

Additionally, motivated by the basic KD intuition that it is useful to main-

tain the similarities of the data with the other classes instead of simply training

with the hard labels, and also by the inherit inefficiency of the conventional KD

when the number of classes is limited and hence the information to be trans-

ferred is limited, we advocate that inside the classes there are also subclasses

that share semantic similarities, and it is also useful to maintain the similarities

of the data with the subclasses. That is, the question that arises is how can

someone efficiently train small networks with an additional supervision that

conveys extra knowledge about the similarities of the data samples with the

subclasses from the model itself and also in an online manner.

Thus, in this paper, we propose a novel online self-distillation approach

namely Online Subclass Knowledge Distillation (OSKD). The intuition of the

proposed distillation method considering a probabilistic view of KD is as fol-

lows. During the learning process, the probability distribution of the data is

transformed layer by layer in a DL model, learning progressively more com-

plex layer representations. Thus, considering a multiclass classification task,
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the data representations at the output layer of the model are forced by a regu-

lar supervised loss to become one-hot representations. However, the process of

converting the complex data representations to one-hot representations usually

leads to over-fitting and requiring also deeper and more complicated models.

Thus, while the conventional KD methodology manifests that it is useful for

each sample to maintain the similarities with the other classes, we argue that it

is advantageous to maintain the similarities of the subclasses in order to further

improve the generalization ability of the model.

More specifically, the proposed online distillation method considers that in-

side each class there is also a set of subclasses that share semantic similarities

(e.g. blue cars, inflatable boats, etc.). Due to the fact that the subclasses inside

each class are unknown and as a consequence it is not feasible to pursue a similar

approach of softening their distribution as in the traditional KD, our goal is to

discover them during the training procedure. To achieve this goal we propose

to estimate them using the neighborhood of each sample. That is, we make the

assumption that the nearest neighbors, in terms of a similarity metric, of each

sample inside a class share the same semantic similarities, and thus they belong

to the same subclass.

Therefore, apart from the regular classification objective, an additional dis-

tillation objective is introduced, which encourages the data representations to

come closer to the nearest representations of the same class. In this way, the

subclasses are revealed throughout the training procedure. At the same time,

the data representations are forced to move further away from the nearest rep-

resentations of the other classes, in order to ensure in this way that the distilla-

tion objective will prevent the representation entanglement. As is also validated

through the conducted experiments, the proposed method is able to derive useful

information and progressively uncover more meaningful subclasses throughout

the training procedure, since they are driven by the supervised loss. It is, finally,

noteworthy that subclass information has been successfully used to improve the

accuracy of various learning problems (Nikitidis et al., 2012, 2014; Maronidis

et al., 2015), underlining the importance of harnessing subclass information
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during the training process of powerful, yet prone to over-fitting, DL models.

The main contributions and advantages of the proposed online distillation

method can be summarized as follows:

• The proposed OSKD method is the first KD method which aims at deriv-

ing additional knowledge by discovering the subclass structure of the data

in an online manner and also from the model itself.

• As opposed to the conventional KD methodology which comes with in-

creased training cost both in terms of time and pipeline complexity, the

OSKD method is faster and simpler, since it is single-stage online KD

method, and thus it is also rendered as more commercially attractive (Anil

et al., 2018). The absence of the stage of training first a strong and heavy-

weight teacher comes also with significant gains in terms of computation

and memory cost.

• The proposed method is capable of deriving additional knowledge beyond

hard labels from the model itself. Surveying the relevant literature, we can

observe that the competitive online distillation methods require multiple

copies of the target network to build a strong teacher, or utilize multiple

models to train each other in order to derive additional knowledge, leading

to multiple times more computationally expensive training procedures. In

opposition, the proposed method derive the additional knowledge from the

model itself in an online manner, without the need of utilizing multiple

models, and hence it has negligible additional computational cost.

• The proposed method, as it is validated through the conducted experi-

ments, is able to derive useful information about the similarities of the

data, progressively more reliable throughout the training procedure, since

it is driven by the supervised loss. On the contrary, competitive ap-

proaches, which for example include the mutual training of multiple stu-

dents from a different initial condition may only provide restricted addi-

tional information.

6



• The proposed online method does not require fine-tuning any other hyper-

parameter, such as the temperature of the softmax activation function,

which is in general crucial for obtaining remarkable improvement when

applying the conventional distillation approach.

• OSKD method is model agnostic, that is it can be applied to any DL

model to improve its performance. In the performed experiments, several

architectures have been utilized, varying from simple and lightweight mod-

els to deeper ones (e.g. ResNet (He et al., 2016)), considerably improving

the classification performance in any considered case.

• Another critical issue for the effectiveness of the conventional KD is the

compatibility between the student and the teacher models. That is, the

distillation process is not always effective, for example, it has been demon-

strated that when the gap between the teacher and the student is large

the latter’s performance degrades (Mirzadeh et al., 2019). Therefore, the

self-nature of the proposed method inherently guarantees the extraction

of useful knowledge compatible to the fast student model.

• The OSKD method is capable of removing the dependency on using sepa-

rate teacher models, which also reduces the required hardware resources by

half, going beyond the state-of-the-art. As a result, the proposed method

can provide the benefits of distillation without requiring a separate teacher

model and increasing the resources/time needed during the training.

• The proposed distillation method can be combined with any other method

for developing effective and faster models, e.g. (Zhang et al., 2018a; San-

dler et al., 2018).

The rest of the manuscript is structured as follows. Section 2 discusses

previous distillation works. The proposed method is presented in Section 3.

Subsequently, the experiments performed to evaluate the proposed method are
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presented in Section 4, and finally, the conclusions are drawn in Section 5.

2. Previous Work

In this Section, recent works in the general area of KT, as well as on online

KD, which is more relevant to our work, are presented.

Knowledge Transfer has been extensively studied during the recent years

with a wide range of applications (Pan et al., 2018; Liu et al., 2019; Mun et al.,

2018; Wang et al., 2018). Firstly in (Buciluǎ et al., 2006) and then in (Hinton

et al., 2015) the idea of distilling the knowledge from a powerful teacher to a

weaker student by encouraging the latter to regress the soft labels produced by

the teacher by appropriately raising the temperature of the softmax activation

function on the output layer of the network, is proposed. The knowledge transfer

procedure is also employed for domain adaptation in combination with limited

labeled data, in (Tzeng et al., 2015), while, similarly, knowledge is transferred

from a Recurrent Neural Network (RNN) model to a small Convolutional Neural

Network (CNN) model, in (Chan et al., 2015). Subsequently, differently from

the vast majority of relevant approaches where the teacher model is assumed

to be weaker than the student model, knowledge from conventional deep neural

networks is used to train a RNN model in (Tang et al., 2016).

Also, the idea of KD (Hinton et al., 2015) is expanded to allow for thin-

ner and deeper students, by using not only soft labels but also hints from the

teacher’s intermediate layers in order to guide the training of the student model,

in (Romero et al., 2014). Then, a method where the student model is trained

to maintain the same amount of mutual information between the learned rep-

resentation and a set of labels as the teacher model is proposed in (Passalis &

Tefas, 2019), while a method that uses similarity-induced embedding to trans-

fer the knowledge between two layers of neural networks, is proposed in (Pas-

salis & Tefas, 2018). A KD method where the student model is encouraged to

mimic the attention map of the teacher model is proposed in (Zagoruyko & Ko-
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modakis, 2017), whilst an approach where the parameters of the student model

are initialized according to the parameters of the teacher model is proposed in

(Chen et al., 2016). Additionally, under the information-theoretic perspective,

knowledge transfer is formulated as maximizing the mutual information between

the student and the teacher networks in (Ahn et al., 2019). A multi-step KD

approach where an intermediate-sized network is utilized to bridge the gap be-

tween the student model and the teacher model is proposed in (Mirzadeh et al.,

2019), since, as it is stated, the performance degrades when the gap between

the teacher model and student model is large.

Furthermore, in a concurrent work (Müller et al., 2020), a subclass knowledge

distillation is proposed, where the teacher model is forced to divide each class

into subclasses that discovers during the training, and then the student model

is trained to match the subclass probabilities. It should be noted, that this

work, as opposed to the proposed subclass distillation method, is an offline

method, that is, it requires the pretraining step of the teacher model in order to

discover the subclasses and after the network’s convergence, the student model is

trained. Thus, this work is accompanied by the discussed shortcomings of offline

distillation methodologies. Furthermore, this work refers to problems with few

classes, and focuses attention on binary classification problems. On the contrary,

the proposed method is an online distillation method, that is, it discovers the

subclasses in a single training step, and also, as it experimentally validated,

improves the classification performance for various multiclass problems, ranging

from few classes (i.e. 10 classes) to much more classes (i.e. 200 classes).

Surveying the recent literature, several self-distillation approaches have been

proposed. Self-distillation as we have previously mentioned describes the kind

of distillation where distillation is applied from one model to another of iden-

tical architecture. For example, KD is applied from a teacher to a student of

identical architecture where the student accomplishes better performance while

it is also optimized faster, in (Yim et al., 2017). The flow of solution procedure

matrix is utilized in this approach instead of the previously mentioned hints for

transferring the knowledge between the intermediate layers. A self-distillation
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approach where a teacher model is initially trained, and then after its conver-

gence an identical student model is trained with both the goals of the hard labels

and matching the output of the teacher model is proposed in (Furlanello et al.,

2018), however without softening the logits (i.e. the inputs to the final soft-

max activation function) by raising the temperature. Similarly, a target model

is trained with a conventional supervised loss, the self-discovered knowledge is

extracted, and in the second training stage, the model is trained both with the

supervised and distillation losses, in (Lan et al., 2018).

In the recent literature, several online distillation works have also been pro-

posed. A method namely co-distillation, improves the performance by proposing

to train k copies of a target model in parallel, by adding a distillation term to

the loss function of the i-th model to match the average prediction of the other

models, in (Anil et al., 2018). A similar approach where multiple students teach

each other throughout the training process is proposed in (Zhang et al., 2018b).

That is, each student is trained with a conventional supervised learning loss

and a distillation loss that matches each student’s class posterior probabilities

with the class probabilities of other students. In this way, each model acts as a

teacher of the other models. In this approach, as opposed to the aforementioned

co-distillation method (Anil et al., 2018), different model architectures can be

utilized for the mutual training.

Subsequently, an online distillation approach proposes to build a multi-

branch version of the network by adding identical branches, each of which con-

stitutes an independent classification model with shared low level layers, and to

create a strong teacher model utilizing a gated logit ensemble of the multiple

branches in (lan et al., 2018). Each branch is trained with the conventional

classification loss and the distillation loss which regresses the teacher’s output

distributions.

Finally, in a recent work (Kim et al., 2019), the previous works (Zhang

et al., 2018b) and (lan et al., 2018) are combined, by proposing an online mutual

knowledge distillation method for enhancing both the performance of the fusion

module and the sub-networks. That is, when different sub-networks are used,
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the sub-networks are trained similar to (Zhang et al., 2018b), whilst when iden-

tical sub-networks are used, the low level layers are shared, and a multi-branch

architecture similar to (lan et al., 2018) is used. The architecture consists of

an ensemble classifier using the ensemble logit produced from the sub-networks

and a fused classifier, using the fused feature map. The model distills knowledge

from the ensemble classifier to the fused classifier, and simultaneously from the

fused classifier to each sub-network classifier.

Finally, in Table 1, a summary of the most representative previous works

providing information on their key attributes, is presented. The summary Table

distinguishes online against offline previous KD works. Provides also informa-

tion on self-distillation works. Finally, it also distinguishes previous KD works

based on the carrier of the knowledge (that is, output layer against intermediate

layers).

3. Proposed Method

In this paper, we propose a novel online subclass distillation method which

allows for developing efficient and fast-to-execute models for various applications

with computational and memory restrictions (e.g. generic robotics applications).

Consider for example the problem of crowd detection for autonomous unmanned

aerial vehicles (Tzelepi & Tefas, 2019). In such a problem, lightweight models,

which should be able to operate on-board (that is on low power GPU) at suf-

ficient speed, are required. Additionally, in this problem the accuracy is as

important as speed. Thus, the proposed OSKD method would allow for train-

ing efficient lightweight models for addressing these problems. It should also

be emphasized that in such a problem with two classes (Crowd vs Non-Crowd)

the knowledge to be transferred about the similarity with the other class by

a regular distillation method would be limited, thus the OSKD could uncover

additional useful knowledge about the subclass similarities for improving the

classification performance (e.g. crowds of different density and structure).

An overview of the proposed method’s pipeline is provided in Fig. 1. Input
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Type Methods

Online Distillation (Zhang et al., 2018b; lan et al., 2018)

(Kim et al., 2019; Anil et al., 2018)

Offline Distillation (Hinton et al., 2015; Chen et al., 2016),

(Chen et al., 2017; Zhang et al., 2019),

(Meng et al., 2019; Furlanello et al., 2018),

(Romero et al., 2014; Zagoruyko & Komodakis, 2017),

(Kim et al., 2018; Passalis & Tefas, 2018),

(Heo et al., 2019; Passalis & Tefas, 2019),

(Jin et al., 2019; Ahn et al., 2019; Müller et al., 2020)

Self Distillation (Furlanello et al., 2018; Anil et al., 2018),

(lan et al., 2018; Ahn et al., 2019),

(Lan et al., 2018; Yim et al., 2017)

Knowledge Source Methods

Output Layer (Furlanello et al., 2018; Hinton et al., 2015),

(Chen et al., 2017; Zhang et al., 2019),

(Meng et al., 2019; Zhang et al., 2018b),

(lan et al., 2018; Kim et al., 2019),

(Anil et al., 2018; Müller et al., 2019),

(Ding et al., 2019; Kim & Kim, 2017; Müller et al., 2020)

Intermediate Layers (Romero et al., 2014; Zagoruyko & Komodakis, 2017),

(Kim et al., 2018; Passalis & Tefas, 2018),

(Heo et al., 2019; Passalis & Tefas, 2019),

(Jin et al., 2019; Ahn et al., 2019)

Table 1: Summary of related KD methods
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images are propagated to the network. The soft labels that reveal the subclass

similarities are computed as described below, and the model is trained both

with the conventional supervised loss and the additional distillation loss, so as

to maintain these similarities.

Input

Figure 1: OSKD methodology

An Ω-class classification problem, and the labeled data {xi,ωi}Ni=1, where

xi ∈ <D an input vector and D its dimensionality, ωi ∈ ZΩ corresponds to

its Ω-dimensional one-hot class label vector (hard label) are considered. For

an input space X ⊆ <D and an output space F ⊆ <Ω, we consider ψ(· ;W) :

X → F as a deep neural network with n ∈ N layers, and set of parametersW =

{W1, . . . ,Wn} whereWi refers to the weights of the i-th layer, which transforms

its input vector to a Ω-dimensional vector containing the probabilities for each

class. That is, ψ(xi ;W) ∈ F corresponds to the output vector of xi ∈ X given

by the network ψ with parameters W.

In the typical classification problem, we seek the parameters W∗ that min-

imize the cross entropy loss, Lce, between the predicted and hard label distri-

butions:
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W∗ = arg min
W

N∑
i=1

Lce(ωi, ψ(xi ;W)), (1)

The cross entropy loss for a set of N samples is formulated as:

Lce = −
N∑
i=1

Ω∑
m=1

ωm
i log(zmi ), (2)

where ωm
i is the m-th element of ωi one-hot label vector, and zmi refers to the

m-th element of the output of the network:

zmi =
exp(ψ(xi ;W)m)∑Ω
j=1 exp(ψ(xi ;W)j)

. (3)

In this work, we propose to distill additional knowledge online from the

model itself throughout the network’s training. Towards this end, considering

that there are subclasses inside each class that share semantic similarities, we

propose to maintain these similarities, which are ignored during the network’s

training only with the hard labels. Since the subclasses inside each class are

unknown, we propose to estimate them using the neighborhood of each sample.

That is, we assume that the nearest neighbors, in terms of a similarity metric,

of each sample inside a class belong to the same subclass (i.e. share the same

semantic similarities).

Thus, for each representation ψ(xi ;W) ∈ F we also define the set Ri con-

taining the nearest representations, in terms of Euclidean distance, belonging

to the same class, ψ(xi ;W), and a set Vi containing the nearest representations

belonging to different classes to the representation. Then, the distillation objec-

tive forces the representation to come closer to the nearest neighbors belonging

to the same class and moving further away from the nearest representations be-

longing to different classes. That is, the additional loss for the nearest neighbors

of the same class to be minimized is formulated as:

L1 =
∑

xi,xj∈Ri

‖ψ(xi ;W)− ψ(xj ;W)‖22, (4)
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and the additional loss for the nearest neighbors of different classes to be max-

imized is formulated as:

L2 =
∑

xi,xl∈Vi

‖ψ(xi ;W)− ψ(xl ;W)‖22. (5)

It is straightforward to show that equations eq. (4) and (5) can be reformulated

as, (Kyperountas et al., 2010):

L1 =
∑

xi∈Ri

‖ψ(xi ;W)− µi
r)‖22, (6)

and

L2 =
∑

xi∈Vi

‖ψ(xi ;W)− µi
v)‖22 (7)

respectively, where µi
r = 1

|Ri|
∑

xj∈Ri ψ(xj ;W), and µi
v = 1

|Vi|
∑

xl∈Vi ψ(xl ;W).

Thus, the overall distillation loss is formulating as: Loskd = L1 +(1−L2). Con-

sequently, in the proposed distillation training procedure, we seek for the pa-

rametersW∗ that minimize the overall loss of cross entropy, Lce and distillation,

Loskd:

W∗ = arg min
W

N∑
i=1

[Lce(ωi, ψ(xi ;W)) + λLoskd(µi
r,µ

i
v, ψ(xi ;W))], (8)

where λ balances the importance between predicting the hard labels and re-

gressing the soft labels.

Simple SGD is utilized to train the model:

∆W = −η ϑL
ϑW

, (9)

where L corresponds to the overall loss. We should note that in our experiments

we utilize mini batch gradient descent policy.

In this way, the network concurrently to the cross entropy loss, is trained

to match the soft labels enforcing it to regard the similarities inside each class,

learning a model which generalizes better.
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4. Experiments

First, a toy example, utilizing the MNIST dataset, (LeCun et al., 1998), is

constructed so as to illustrate the effect of the proposed distillation method.

Subsequently, three datasets were used to evaluate the performance of the pro-

posed method. The descriptions of the datasets as well as the model architecture

are presented in the following subsections. We performed four sets of experi-

ments utilizing four different number of nearest neighbors, as well as for two

different sizes of mini-batch. An ablation study is also conducted on Cifar-10

dataset in order to validate the effectiveness of subclass knowledge distillation.

Test accuracy is used to evaluate the proposed distillation method. Each exper-

iment is executed five times, and the mean value and the standard deviation are

reported, considering the maximum value of test accuracy for each experiment.

The curves of mean test accuracy are also provided. We also provide the curves

of mean test accuracy. Finally, we use the sum of floating point operations

(FLOPS) to evaluate the complexity of the proposed OSKD method.

4.1. Datasets

In order to evaluate the performance of the proposed online self-distillation

method, we conduct experiments on five datasets.

4.1.1. Cifar-10

The Cifar-10 dataset, (Krizhevsky & Hinton, 2009), consists of 60,000 im-

ages of size 32× 32 divided into 10 classes with 6,000 images per class. 50,000

images are used as the train set and 10,000 images as the test set. Sample

images of the Cifar-10 dataset are provided in Fig. 2

Figure 2: Sample images of the Cifar-10 dataset.
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4.1.2. Cifar-100

The Cifar-100 dataset, (Krizhevsky & Hinton, 2009), consists of 60,000 im-

ages of size 32 × 32 divided into 100 classes with 600 images per class. 50,000

images are used as the train set and 10,000 images as the test set.

4.1.3. Street View House Numbers

The Street View House Numbers (SVHN) dataset, (Netzer et al., 2011), is

obtained from house numbers in Google Street View images. It contains 73,257

train images and 26,032 test images, divided into 10 classes, 1 for each digit

from 0 to 9. Input images are of size 32 × 32 and sample images are provided

in Fig. 3

Figure 3: Sample images of the SVHN dataset.

4.1.4. Fashion MNIST

The Fashion MNIST dataset, (Xiao et al., 2017) comprises of 28×28 grayscale

images of 70,000 fashion products from 10 categories, with 7,000 images per cat-

egory. The training set has 60,000 images and the test set has 10,000 images.

Sample images are presented in Fig. 4

17



Figure 4: Sample images of the Fashion MNIST dataset.

4.1.5. Tiny ImageNet

The Tiny ImageNet dataset consists of a training set of 200 classes, each

containing 500 images, and a validation set consisting of 50 images per class.

Input image are of size 64× 64. Sample images are provided in Fig. 5.

Figure 5: Sample images of the Tiny ImageNet dataset.

4.2. CNN Models

In this work, for the Cifar-10 and SVHN datasets, we utilize a simple CNN

model consisting of five layers; two convolutional layers with 6 filters of size
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5 × 5 and 16 filters of size 5 × 5 respectively, followed by a Rectified Linear

Unit (ReLU) (Nair & Hinton, 2010) activation, and three fully connected layers

(128 × 64 × 10). The convolutional layers are followed by a 2 × 2 max-pooling

layer with a stride of 2. In the first two fully connected layers the activation

function is the ReLU, while the last output layer is a 10-way softmax layer

which produces a distribution over the 10 class labels of the utilized datasets.

In the case of the Fashion MNIST dataset, we also utilize a simple architecture

consisting of two convolutional with 20 filters of size 5× 5 and 50 filters of size

5× 5 followed by a ReLU activation, and two fully connected layers (64× 10).

The convolutional layers are followed by 2 × 2 max-pooling layer with a stride

of 2. In the first fully connected layer a ReLU activation is applied, while the

last output layer is a 10-way softmax layer.

In the challenging case of Tiny ImageNet dataset we utilize the common

ResNet-50 (He et al., 2016) architecture, without utilizing any pre-trained model

in order to avoid image resizing. It is should be emphasized that the target of

this work is not to provide state-of-the-art models, but rather to to evaluate the

effect of the proposed online subclass distillation method on training lightweight

model that can be effectively deployed on embedded and mobile devices. To

this aim, we use the aforementioned simple CNN architectures in three out

of four cases, while we also use a common powerful network in the case of

Tiny ImageNet, validating our claim that the proposed method can be applied

to any deep neural model and improve the baseline performance. Finally, for

comparison purposes against previous online KD approaches, we also utilize

ResNet-32 (He et al., 2016) and Wide ResNet 16-2 (abbreviated as WRN-16-

2) (Zagoruyko & Komodakis, 2016) to perform experiments on Cifar-10 and

Cifar-100 datasets.

4.3. Implementation Details and Parameter Selection

All the experiments were conducted using the PyTorch framework. The

mini-batch gradient descent is used for the networks’ training. The learning

rate (lr) is set to 10−3, and the momentum is 0.9. All the models are trained
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on an NVIDIA GeForce GTX 1080 with 8GB of GPU memory for 100 epochs.

In order to select the optimal values we performed experiments on the Cifar-10

dataset.

4.3.1. On the lr and the momentum

First, regarding the lr we performed experiments utilizing different values

of lr for mini-batch of 64 samples for 100 epochs. The experimental results

are illustrated in Fig. 6 and Table 2. As it is shown, the best performance is

achieved for lr = 10−3. Regarding the momentum, is set to 0.9, since this is the

value that is typically used (Sutskever et al., 2013; You et al., 2017).

4.3.2. On the mini batch size and the training epochs

Regarding the mini batch size with regard to the training epochs, we per-

formed experiments using the optimal parameters for mini-batch of size 32, 64,

128, and 256 samples for 200 epochs. Experimental results are presented in Fig.

7 and in Table 3. As we can see better performance is achieved for mini batch

of size 32 and 64 samples, while we can see that for these mini batch sizes the

models have converged by the first 100 epochs. Thus, for the utilized simple

models we use mini batch of 32 and 64 samples for 100 epochs.

4.3.3. On the parameter λ in eq. (8)

In order to select the weight factor λ in eq. (8) for controlling the balance

between the contributing losses, we fix the number of nearest neighbors (i.e. we

use 4 nearest neighbors) and we conduct experiments for different values of the

weight factor λ. The experimental results are presented in Fig. 8. As it can be

observed, better results are accomplished for λ = 0.001, and thus we use this

value in the rest experiments. We should finally note that better results could

be accomplished through a more extended search for the optimal weight factor.

4.4. Experimental Results

First, a toy example is constructed in order to illustrate the effect of the

proposed distillation method. More specifically, we use the MNIST dataset and
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Figure 6: Cifar-10: Mean test accuracy throughout the training epochs for different values of

learning rate

LR Test Accuracy

10−2 64.16% ± 0.64%

10−3 64.73% ± 0.65%

10−4 54.62% ± 1.05%

Table 2: Cifar-10: Test accuracy for different values of learning rate

Figure 7: Cifar-10: Mini batch size
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Mini batch size Test Accuracy

32 64.85% ± 0.28%

64 64.77% ± 0.44%

128 64.50% ± 0.38%

256 64.30% ± 0.39%

Table 3: Cifar-10: Test accuracy for different mini batch sizes.

Figure 8: Cifar-10: OSKD weight factor λ in eq. (8)
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we build a binary classification problem for discriminating between even and

odd digits. For each of the two classes we use three different digits, that is

0, 2, and 4 for the even class, and 1, 3, and 5 for the odd class. The formed

train set consists of 36,018 samples, while the formed test set consists of 6,032

samples. In this way, we are enabled to acknowledge in retrospect that there

are three distinct subclasses inside each class. Then, we train a simple CNN

consisting of two convolutional and two fully connected layers with and without

the proposed distillation objective. For the proposed distillation method, we

consider 10 nearest neighbors for each sample inside each class, for a mini-batch

of 60 samples. Then, we use the t-distributed Stochastic Neighbor Embedding

algorithm, (Maaten & Hinton, 2008), to visualize the data representations in

the penultimate layer. Experimental results are demonstrated in Figs. 9 and 10

for the train and test sets respectively. As it is shown, the distillation objective

achieves to reveal the subclasses inside each class, improving the model’s per-

formance both on the train and the test sets.

Subsequently, four sets of experiments performed, for four different numbers of

nearest neighbors utilizing also two different mini-batch sizes, in order to vali-

date the proposed online distillation on the Cifar-10, Fashion Mnist, and SVHN

datasets. That is, we use 2, 4, 8, and 12 nearest neighbors for each sample

(abbreviated as OSKD - 2NN, OSKD - 4NN, OSKD - 8NN, and OSKD - 12NN

respectively), and we compare the performance of the proposed method against

the baseline performance, that is without distillation (abbreviated as W/o Dis-

tillation). The considered mini-batch sizes, are of 32 and 64 samples. The ex-

perimental results for mini-batch size of 32 are presented in Table 4, whilst for

mini-batch size of 64 are presented in Table 5. Best results are printed in bold.

As it can be observed from the reported results, the proposed OSKD method re-

markably improves the baseline performance in all the considered cases. We can

also observe that better results are reported for 12 nearest neighbors in all the

considered cases. Furthermore, we have also conducted individual experiments

for larger value of nearest neighbors. That is, we performed experiments for 24

nearest neighbors on the Cifar-10 dataset, achieving accuracy 65.35%±0.58%
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for mini batch of 32 samples, which improves the baseline performance (w/o

distillation), however is inferior as compared to best performance achieved with

12 nearest neighbors (67.36% ± 0.82%). Correspondingly, for mini batch of 64

samples, accuracy 65.41%±1.09% is accomplished using 24 nearest neighbors,

which also improves the baseline performance (w/o distillation) and is inferior

as compared to best performance achieved with 12 nearest neighbors (66.26%

± 0.73%).

Correspondingly, in Figs. 11-13 the mean test accuracy of the proposed

method for the four different number of nearest neighbors against the baseline

method is illustrated. The enhanced performance of the proposed method is

validated, while the regularization effect of the method is also clearly depicted.

Regarding the Tiny ImageNet dataset, since it differs from the utilized

datasets (that is, it consists of 200 classes), we used mini batch 128 samples

(and we also consider 24NN for estimating the subclasses). The experimental

results are presented in Table 6. As it can be observed, the proposed distilla-

tion method achieves to improve the performance on the Tiny ImageNet dataset,

too. More meaningful subclasses are discovered using 12NN, leading to the best

performance. Consequently, the proposed OSKD method can improve the per-

formance in any considered case, that is, considering 10 class and 200 class

problems, and also utilizing simple models, or more powerful ones (ResNet-50).

Method Cifar-10 SVHN-10 Fashion MNIST

W/o OSKD 64.83% ± 0.57% 88.82% ± 0.22% 91.28% ± 0.14%

OSKD-2NN 66.16% ± 0.76% 89.08% ± 0.26% 91.67% ± 0.13%

OSKD-4NN 66.39% ± 0.77% 89.52% ± 0.23% 91.59% ± 0.07%

OSKD-8NN 66.59% ± 0.78% 89.61% ± 0.29% 91.82% ± 0.08%

OSKD-12NN 67.36% ± 0.82% 89.67% ± 0.28% 91.88% ± 0.14%

Table 4: Test Accuracy - Mini Batch Size: 32

An ablation study is also conducted in order to validate that the effective-

ness of the proposed method derives from the subclass knowledge rather than

24



(a) W/o Distillation (b) OSKD

Figure 9: MNIST: Train Set

(a) W/o Distillation (b) OSKD

Figure 10: MNIST: Test Set
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(a) Batch: 32 (b) Mini-batch: 64

Figure 11: Cifar-10: Test accuracy for different numbers of nearest neighbors inside each class

(a) Mini-batch: 32 (b) Mini-batch: 64

Figure 12: SVHN-10: Test accuracy for different numbers of nearest neighbors inside each

class
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Method Cifar-10 SVHN-10 Fashion MNIST

W/o OSKD 64.73% ± 0.65% 88.71% ± 0.31% 91.21% ± 0.14%

OSKD-2NN 65.91% ± 0.62% 88.50% ± 0.40% 91.33% ± 0.16%

OSKD-4NN 65.87% ± 0.88% 89.36% ± 0.16% 91.50% ± 0.17%

OSKD-8NN 66.19% ± 0.96% 89.58% ± 0.25% 91.61% ± 0.13%

OSKD-12NN 66.26% ± 0.73% 89.62% ± 0.22% 91.68% ± 0.10%

Table 5: Test Accuracy - Mini Batch Size: 64

(a) Mini-batch: 32 (b) Mini-batch: 64

Figure 13: Fashion MNIST: Test accuracy for different numbers of nearest neighbors inside

each class

Method Tiny ImageNet

W/o OSKD 29.70% ± 0.51%

OSKD-2NN 30.18% ± 0.63%

OSKD-4NN 30.25% ± 0.64%

OSKD-8NN 30.21% ± 0.48%

OSKD-12NN 30.95% ± 0.43%

OSKD-24NN 30.02% ± 0.89%

Table 6: Test Accuracy - Mini Batch Size: 128
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the additional criterion that forces the data representations of each class to

move further away from the nearest representations of the other classes so as

to ensure that the distillation objective will not encourage the representation

entanglement. To this aim, we conduct experiments utilizing only the subclass

knowledge without the aforementioned disentanglement criterion (denoted as

Only Class), as well as utilizing only the disentanglement criterion, without the

subclass objective (denoted as Only Non-Class). Experimental results on the

Cifar-10 dataset are provided in Table 7 considering mini-batch of 32 samples,

while experimental results considering mini-batch of 64 samples are provided

in Table 8. Regarding the first case of mini-batch of 32 samples, the expected

number of samples of the same class is around 4. Indeed, using these numbers of

neighbors for estimating the subclasses leads to the best accuracy. On the other

hand, the rest of the in-batch samples are expected to belong to a different class,

and as a result, using a larger number of neighbors from different classes leads

to better accuracy for the disentanglement criterion. On the contrary, consid-

ering the second case of mini-batch of 64 samples, where the expected number

of samples of the same class is larger, it is shown that the larger numbers of

neighbors for estimating the subclasses, that is 8 and marginally 12 nearest

neighbors, lead also to the best accuracy. Furthermore, we should highlight

that the subclass criterion improves the performance in any case, validating the

subclass knowledge hypothesis. Finally, the best performance is accomplished

by the combined objective.

NN Only Class Only Non-Class Both

2 65.40% ± 1.18% 65.24% ± 0.84% 66.16% ± 0.76%

4 65.95% ± 0.63% 65.72% ± 0.73% 66.39% ± 0.77%

8 65.30% ± 0.53% 66.44% ± 0.45% 66.59% ± 0.78%

12 65.20% ± 0.67% 66.42% ± 0.67% 67.36% ± 0.82%

Table 7: Cifar-10 - Mini Batch Size: 32 (Baseline: 64.83% ± 0.57%)

Subsequently, since as we have stated the proposed method is model ag-
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NN Only Class Only Non-Class Both

2 65.39% ± 1.35% 64.57% ± 0.65% 65.91% ± 0.62%

4 65.47% ± 0.30% 65.13% ± 0.50% 65.87% ± 0.88%

8 66.12% ± 0.79% 65.90% ± 0.61% 66.19% ± 0.96%

12 65.44% ± 0.60% 65.20% ± 0.86% 66.26% ± 0.73%

Table 8: Cifar-10 - Mini Batch Size: 64 (Baseline: 64.73% ± 0.65%)

nostic, we have also conducted experiments in order to compare the proposed

methods with state-of-the-art distillation methods. More specifically, we utilize

two common architectures, that is ResNet-32 (He et al., 2016) and WRN-16-

2 (Zagoruyko & Komodakis, 2016), we apply the proposed online distillation

method on Cifar-10 and Cifar-100 datasets, and compare the performance with

competitive online distillation methods, (lan et al., 2018; Kim et al., 2019; Zhang

et al., 2018b), and also with offline distillation methods (KD (Hinton et al.,

2015)). We should note some offline distillation methods (e.g. (Romero et al.,

2014; Zagoruyko & Komodakis, 2017)) are orthogonal to KD approaches that

employ the output of a model as source of knowledge. This category includes

most of the online distillation methods proposed in the literature. Therefore,

these methods can be combined with any of the proposed online distillation ap-

proaches. Therefore, to ensure a fair comparison between the evaluated method

we restricted the evaluation to methods that use the output of a model as source

of knowledge.

First, for comparing the OSKD method against the online distillation meth-

ods (lan et al., 2018; Kim et al., 2019) on Cifar-10 dataset we follow the same

training setup as in (lan et al., 2018; Kim et al., 2019) to ensure a fair compari-

son. That is, for the ResNet-32 case we use the SGD with Nesterov momentum

and set the momentum to 0.9. The initial learning rate is set to 0.1 and drops to

0.01 at 50% training and to 0.001 at 75%. The network is trained for 300 epochs.

For the WRN-16-2 case, we also use the SGD with Nesterov momentum and set

the momentum to 0.9. The initial learning rate is set to 0.1 and drops by 0.2 at
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60, 120 and 160 epochs. Models are trained for 200 epochs using mini-batch of

128 samples. We should highlight that for as much as possible fair comparisons,

we use only two sub-networks in all the competitive approaches, similar to (Kim

et al., 2019), since the proposed method is a single branch method, that is, it

does not utilize multiple branches of the network. Thus, we compare the OSKD

method with ONE distillation method, considering the average performance of

the two branches, and correspondingly with the FFL-S distillation method con-

sidering the average performance of the two sub-networks. We should highlight

that the number of parameters in both FFL-S and ONE cases in the test phase

is identical to the OSKD case, since the additional branches in both cases as

well as the fusion module in FFL-S are removed during the test phase.

Furthermore, except for the competitive online distillation methods, we also

compare the performance of the proposed method with the ensembling methods,

that is ONE-E and FFL, even though we do not follow an ensembling methodol-

ogy. That is, we also compare the performance of the proposed student model,

against the ensemble models which serve as teachers. It should be emphasized

that the number of parameters is 0.83M in ONE-E and 0.85M in FFL, while

the number of the parameters of OSKD is 0.50M considering ResNet-32, while

the number of parameters in ONE-E is 1.24M, and 1.29M in FFL, while the

number of parameters of OSKD is 0.70M, considering WRN-16-2.

Evaluation results are presented in Table 9 considering the WRN-16-2, and in

Table 10 considering the ResNet-32 model. As we can see from the demonstrated

results, the proposed online distillation method achieves superior performance

over competitive online distillation methods, as well as over both the ensebmling

methods, considering the WRN-16-2 model, and one of them considering the

ResNet-32 model.

Subsequently, we performed experiments utilizing the ResNet-32 model for

comparing the performance against the DML (Zhang et al., 2018b) method

on Cifar-10 and Cifar-100 datasets. For fair comparisons, we use the same

experimental setup as in (Zhang et al., 2018b). That is, we use SGD with

Nesterov momentum and set the initial learning rate to 0.1, momentum to 0.9
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Method Test Accuracy

WRN-16-2 93.55% ± 0.11%

ONE (lan et al., 2018) 93.76%± 0.16%

FFL-S (Kim et al., 2019) 93.79% ± 0.12%

OSKD 93.96% ± 0.13%

ONE-E (lan et al., 2018) 93.84%± 0.20%

FFL (Kim et al., 2019) 93.86% ± 0.11%

Table 9: Comparisons against online distillation methods on Cifar-10 utilizing the WRN-16-2

architecture.

Method Test Accuracy

ResNet-32 93.07% ± 0.17%

ONE (lan et al., 2018) 93.76%± 0.12%

FFL-S (Kim et al., 2019) 93.81% ± 0.12%

OSKD 93.93% ± 0.09%

ONE-E (lan et al., 2018) 93.93%± 0.17%

FFL (Kim et al., 2019) 94.02% ± 0.12%

Table 10: Comparisons against online distillation methods on Cifar-10 utilizing the ResNet-32

architecture.
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Method Test Accuracy

ResNet-32 92.47%

KD (Hinton et al., 2015) 92.75%

DML (Zhang et al., 2018b) 92.74% (Net1: 92.68% Net2: 92.80%)

OSKD 93.30% ± 0.16%

Table 11: Comparisons against online and offline distillation methods on Cifar-10 utilizing

the ResNet-32 architecture.

and mini batch size to 64. The learning rate dropped by 0.1 every 60 epochs

and we train for 200 epochs. We also include comparisons against the most

common offline KD method (Hinton et al., 2015), using as teacher model the

more powerful ResNet-110 model.

It should be highlighted that the experimental setup used in the comparisons

against DML and KD, as well as against ONE and FFL, follows the same setup

as the one proposed in the literature in order to ensure fair comparisons. As a

result, the are slight differences compared to some of the experiments conducted

on the same dataset for evaluating the effect of different parameters, for which

a more lightweight architecture was employed (all parameters are reported in

the corresponding experiments). Experimental results are provided in Table 11

for the Cifar-10 dataset, and in Table 12 for the Cifar-100 dataset. For the

DML method we provide the average performance of the two networks and we

also provide the performance of the two networks separately. As it is shown

the proposed method achieves superior performance over the competitive on-

line method as well as against the offline KD method. We should highlight that

DML utilizes a different experimental setup from the previous online distillation

methods (Kim et al., 2019; lan et al., 2018). The proposed method achieves ac-

curacy 93.93% on Cifar-10 using their utilized experimental setup, as presented

in Table 10.

Finally, we evaluate the complexity of the proposed online distillation method

using the sum of floating point operations (FLOPS) in one forward pass on a
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Method Test Accuracy

ResNet-32 68.99%

KD (Hinton et al., 2015) 71.17%

DML (Zhang et al., 2018b) 70.97% (Net1: 71.19% Net2: 70.75%)

OSKD 71.23% ± 0.09%

Table 12: Comparisons against online and offline distillation methods on Cifar-100 utilizing

the ResNet-32 architecture.

fixed input size. Model size, represented by the model’s parameters, is also re-

ported for each of the utilized models. We use the ResNet-32 and WRN-16-2

models on the Cifar-10 dataset. In order to highlight the effectiveness of the

proposed method we compare the complexity with the most famous offline KD

method, (Hinton et al., 2015). In this case, for the ResNet-32 student model, we

use as teacher the stronger ResNet-110 model. Correspondingly, for the WRN-

16-2 student model, we use as teacher the stronger Wide ResNet 40-2 model

(abbreviated as WRN-40-2).

Evaluation results are presented in Table 13. From the demonstrated results,

it is validated the proposed distillation method is significantly more efficient as

compared to the conventional offline methodology. We should also note that

competitive online distillation methods that utilize multiple branches or copies

of a given network, require at least two times more FLOPS than the proposed

one. That is, the proposed online distillation method is also more efficient as

compared to competitive online methods, too. The significant differences that

are observed between the proposed method and the KD method is due to the

fact that the proposed one does not require keeping and using a separate teacher

model for the distillation process. This can be better understood if we use the

notation NT to refer to the FLOPS required for a single feed-forward pass of the

teacher and NS to refer to the the number of FLOPS required for a single feed-

forward pass of the student. Then, the complexity of distillation methods that

follow the typical separate teacher-student paradigm is O(k ·NT +NS), where k
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Method Teacher Student Complexity

KD (Hinton et al., 2015) ResNet-110 (1.7M) ResNet-32 (0.5M) 0.33 GFLOPS

OSKD - ResNet-32 (0.5M) 0.07 GFLOPS

KD (Hinton et al., 2015) WRN-40-2 (2.26M) WRN-16-2 (0.7M) 0.43 GFLOPS

OSKD - WRN-16-2 (0.7M) 0.10 GFLOPS

Table 13: Complexity of the proposed OSKD and KD (Hinton et al., 2015) methods using the

sum of floating point operations (FLOPS) in one forward pass on a fixed input size utilizing

the Cifar-10 dataset. Model size, represented by the model’s parameters, is also reported

inside parentheses for each of the utilized models.

is the number of teachers used for the distillation process (typically k = 1). The

proposed method does not utilize a separate teacher model, since it dynamically

mines the knowledge from the same model, performing self-distillation. As a

result, this lowers the complexity of distillation to O(NS), which is consistent

with the reported results. This can make the proposed method more appealing

for practical applications, since it lowers both the time and cost required for

using distillation.

5. Conclusions

In this paper a novel single-stage knowledge distillation method is proposed,

namely Online Subclass Knowledge Distillation, that aims to reveal the similar-

ities inside classes, improving the performance of any deep neural model in an

online manner. As opposed to existing online distillation methods, the proposed

method is capable of obtaining further knowledge from the model itself, without

building multiple identical models or using multiple models to teach each other,

rendering the OSKD method more efficient. The experimental evaluation on

five datasets validates efficiency of the proposed method, while comparison re-

sults against existing online distillation methods validate the superiority of the

proposed method.
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5.1. Limitations and future research direction

The proposed method, allows for efficiently lightweight deep learning mod-

els, by distilling subclass knowledge from the model itself, without training first

a powerful model as in the conventional KD. However, in spite of the discussed

advantages over the conventional KD and existing online KD methods, this also

may restricts the potentials of the method, since it is based on the features pro-

duced by the lightweight model in order to invent the possible subclasses. Thus,

despite lightweight models were successfully used in the conducted experiments,

more research is needed in order to establish the limits of this process, i.e., how

small can a model be in order to produce reliable features that would allow for

revealing meaningful subclasses. Furthermore, in this work we utilized the out-

put representations to perform the knowledge distillation, however intermediate

representations could also be investigated in future work, since they carry, in

general, useful information and have also been utilized in previous works for

knowledge transfer, e.g. (Romero et al., 2014).
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