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Abstract In this paper, we first propose lightweight deep CNN models, capable of ef-
fectively operating in real-time on-drone for high-resolution video input, addressing
various binary classification problems, e.g. crowd, face, football player, and bicycle
detection, in the context of media coverage of specific sport events by drones with
increased decisional autonomy. Furthermore, we propose a novel Class-Specific Dis-
criminant regularizer in order to improve the generalization ability of the proposed
real-time models, exploiting the nature of the considered two-class problems. The ex-
perimental evaluation on four datasets validates the effectiveness of the proposed
regularizer in enhancing the generalization ability of the proposed models.

Keywords Deep Convolutional Neural Networks · Class-Specific Discriminant
Regularizer · Real-Time · Lightweight Models · Drones · Binary Classification

1 Introduction

During the recent years deep Convolutional Neural Networks (CNN), [1,2] have been
established among the most efficient research directions in a wide spectrum of com-
puter vision tasks, accomplishing superior results over previous shallow algorithms,
[3,4,5,6,7]. Apart from developing successful deep models for various computer vision
tasks, another research direction that flourishes during the recent few years is the
development of lightweight models capable of running on devices with limited compu-
tational resources such as mobile phones and embedded systems, [8,9].
Over the recent few years Unmanned Aerial Vehicles, broadly known as drones, have
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powerfully emerged in a wide range of applications, ranging from entertainment to
visual surveillance, medical emergencies [10], and rescue within the context of natural
disasters [11]. Their ability to capture spectacular aerial shots or shots of even inacces-
sible places, gradually displaces previous practices in media production. A key issue
associated with the rise of drones is the demand of developing models for various com-
puter vision tasks, capable of addressing the additional challenges of drone-captured
images (such as occlusion, unconstrained pose variations, small object size), and also
capable of running on-drone, that is with limited processing power.

Thus, in this paper, we propose lightweight deep CNN models allowing real-time
deployment for high resolution images for specific classification problems involved in
the context of media coverage of certain sport events by multiple drones with increased
decisional autonomy. More specifically, we deal with face, bicycle, and football player
detection, as well as crowd detection towards crowd avoidance ensuring the drone’s
safe operation, since a drone may fly in vicinity of crowds, and is potentially exposed
to unpredictable errors or environmental hazards that impose emergency landing, and
also drone flight regulations in several Countries’ national legislation request a safe
distance to be maintained between the drone and crowds. Our goal is to provide
semantic heatmaps [12], rather than bounding boxes, by predicting for each location
within the captured high-resolution scene the object’s presence. That is, we train models
with RGB input of size either 32 × 32 or 64 × 64, and then test images are fed
to the network, and for every window 32 × 32 or 64 × 64 respectively, we compute
the output of the network at the last convolutional layer. An example of a crowd
heatmap is provided in Fig. 1. Furthermore, the above procedure finds application in
the camera control problem, [13,14], where the goal is to control the camera without
using bounding boxes but only visual input. That is, the semantic heatmaps for each of
the aforementioned classification problems, aim to assist the algorithm for controlling
the camera of the drone for cinematography tasks by sending error signals. We also
note that apart from the camera control problem, in some cases the object to be
detected (such as crowd) could be distributed in such a way in an image, that it is
difficult to be bounded by a box. Thus, in these cases it is more suitable to predict for
each patch a probability of crowd existence, and then provide a semantic heatmap of
the estimated probability of existence of crowd in each location within the captured
scene, instead of a box surrounding the crowded area. We should highlight that it
is of utmost importance for the application to handle high resolution images, since
objects in drone-captured images are extremely small, and thus image resizing in order
to meet real-time deployment limits, that is used by almost all of the state-of-the-art
visual content analysis models (e.g. YOLO [15], SSD [16], etc.), would further shrink
the object of interest, rendering the detection infeasible. Finally, we should note that
even recent drones are capable of providing HD streaming, this comes with a latency,
since the drone needs to compress, transmit and decompress the video stream. It was
experimentally verified, that a procedure of compressing the drone-captured stream,
sending it to the ground station, and decompressing it in order to use it for each of
the tasks, has a latency of 120 ms (3 frames). More specifically, the pipeline was as
follows: The video stream captured from drone was compressed using H.264 encoding.
The compression took place on-drone using the NVIDIA’s Jetson TX2 accelerators.
Then the compressed stream was transmitted to the ground station via LTE using
the RTP protocol, where it was decompressed. Thus, considering a detection/tracking
task of fast moving objects, like the ones involved in sport events, the aforementioned
latency (120 ms) leads to the loss of the object of interest. Furthermore, the drone
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should be able to operate safely, even when the communication to the ground station
is infeasible, thus our goal is to develop models for addressing the specific classification
problems on-drone, as well as in real-time.

To the best of our knowledge there is no other work in the recent literature
proposing real-time models capable of running on devices with limited computational
resources for high resolution input. In [17] a computation-efficient CNN model is pro-
posed for mobile devices with limited computing power, and it is shown that in order
to achieve real-time deployment, someone has to reduce the input frame resolution
to 224 × 224, sacrificing also the accuracy. However, surveying the relevant literature
we can see that several works have emerged towards designing lightweight models. In
[9] is proposed to replace 3 × 3 convolutions with 1 × 1 convolutions to create a very
small network capable of reducing 50× the number of parameters while obtaining high
accuracy. In [18] various practical guidelines for efficient network design and a new
architecture are proposed. In [19] an efficient convolutional network architecture that
allows feature re-use through dense connectivity, and prunes filters associated with
superfluous feature re-use through learned group convolutions, is proposed. In [20] the
problem of deploying deep neural networks on mobile devices is addressed, and an
acceleration method so as to speed up the neural networks with adequate accuracy,
by significantly reducing the execution time on non-tensor layers, is proposed.
Subsequently, in [21] the problem of target recognition in synthetic aperture radar
images is addressed, proposing a lightweight CNN model based on visual attention
mechanism. In [22] a real-time traffic sign recognition system consisting of detection
and classification modules is proposed. A color probability model to deal with color
information of traffic signs is first proposed, traffic sign proposals are then extracted
and, SVM and CNN are combined to detect and classify traffic signs. In [23] the
authors deal with dynamic scene classification utilizing two variants of deep convo-
lutional neural networks to encode spatial appearance and short-term dynamics into
short-term deep features, and then they propose to extract long-term frequency features
using the autoregressive moving average model. Finally, in [24] the authors deal with
change detection, proposing a general end-to-end 2-D convolutional neural network
framework for hyperspectral image change detection. A mixed-affinity matrix is firstly
designed, and subsequently a 2-D convolutional neural network is designed to learn
the discriminant features effectively from the multisource data at a higher level so as
to enhance the generalization ability of the proposed change detection algorithm.

Fig. 1: Crowded image and the corresponding predicted heatmap of crowd presence.
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Furthermore, since we deal with lightweight models that usually have inferior
performance compared to the more complex ones, we focus on enhancing their per-
formance. That is, the second goal of this work is to propose a novel regularization
method in order to prevent over-fitting and enhance the generalization ability of the
proposed lightweight models. Generally, this constitutes a major issue in deep learning
algorithms, since neural networks are prone to over-fitting due to their high capacity.
During the past years, several regularization schemes have been proposed in order to
prevent overfitting in neural networks, ranging from common regularization methods,
like L 1/L 2 regularization which penalize large weights during the network optimiza-
tion, to Dropout [25] where for each training sample, a randomly selected subset of
the activations is zeroed in each epoch, and a generalization of it, Dropconnect [26]
which instead of activations, sets a randomly selected subset of weights within the
network to zero. Other earlier works include weight elimination, [27], and Bayesian
methods, [28]. From a different viewpoint, multitask-learning [29] constitutes a way
of improving the generalization ability of a model. For example, in [30] the authors
introduced techniques developed in semi-supervised learning in the deep learning do-
main. That is, they combined an unsupervised regularizer with a supervised learner to
perform semi-supervised learning. Furthermore, in [31], a novel CNN architecture with
an SVM classifier at every hidden layer is proposed. This companion objective acts as a
kind of feature regularization. Finally, in [32] the authors propose a two-stage training
method including pre-training process and implicit regularization training process, in
order to address the overfitting problem. In the first stage a network model is trained to
extract the image representation for anomaly detection, while in the second stage, the
network is retrained, based on the anomaly detection results, to regularize the feature
boundary and make it converge in the proper position. In this work, considering two-
class classification problems, where the one class describes a specific concept, while the
other class describes anything than this concept (i.e. genuine versus impostor class),
e.g. Crowd and Non-Crowd, Face and Non-Face, etc., we propose the so-called Class-
Specific Discriminant (CSD) regularizer, which exploiting the nature of the problem,
aims to enhance the discriminative ability of the models, by enforcing data belong-
ing to the class under consideration to be close to their class centroid. Finally, we
should note that the proposed regularizer is applicable to several network architectures
for binary classification problems, however its necessity is traced in improving the
performance of real-time lightweight CNN models.

The main contribution of this paper can be summarized as follows:

– We propose lightweight deep CNN models for various classification problems, ca-
pable of running in real-time on-drone.

– We propose a novel Class-Specific Discriminant regularizer in order to enhance
the generalization ability of the proposed models.

The remainder of the manuscript is structured as follows. The proposed real-time
CNN model architectures are provided in Section 2. Subsequently, the proposed CSD
regularizer is presented in Section 3. The experiments, including the datasets descrip-
tion, the implementation details and the experimental results, are provided in Section
4. Finally, the conclusions are drawn in Section 5.
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Table 1: VGG-720p - Input 32 × 32 / Input 64 × 64

Layer Kernel Stride Pad Max Pooling Channels

conv1_1 3 × 3 1 / 1 1 / 1 - / - 16
conv1_2 3 × 3 1 / 1 1 / 1 X/- 16
conv2_1 3 × 3 1 / 1 1 / 1 - / - 24
conv2_2 3 × 3 1 / 4 1 / 1 X/ X 16
conv_last 8 × 8 1 / 1 0 / 0 - / - 2

2 Real-time CNN models

In this paper, we aim to propose effective deep models for various binary classification
problems, which allow real-time deployment (about 25 frames per second) on-drone
for high resolution images. We should highlight that it is crucial for the application
to handle high resolution images, since objects in images captured by drones are
extremely small, and thus image resizing in order to meet real-time deployment limits,
would further shrink the object of interest, rendering the detection infeasible. Fig. 2
underlines the demand for high resolution images. That is, we provide an aerial image
that contains bicycles (bicycles with bicyclists), Fig. 2a, and the resulting heatmaps
for input of various resolutions, i.e. 640×480, 1280×720, and 1920×1080, utilizing a
proposed model, Figs. 2d-2f. As we can observe as the resolution increases, we can
achieve better performance. Furthermore, in Figs. 2b and 2c, we provide the predictions
for the same input utilizing two state-of-the-art detectors which have trained to detect
among other classes, also persons and bicycles, that is YOLO v.2 [15] and Faster
R-CNN [33], which operate for input 604 × 604 and 1000 × 600 respectively. We
should note that we provide the comparisons with the aforementioned state-of-the
art detectors which provide bounding boxes as output, as opposed to the provided
resulting heatmaps imposed by the application, in order to evaluate the accuracy of
the proposed models against state-of-the-art models. As we can see, both the state-
of-the-art detectors perform poorly, while they also run at much less than real-time,
as we mention below. Note also, that SSD [16] and SSD with MobileNets [8], which
operate for input 300 × 300 as well as for input 512 × 512, fail to detect any bicycle.

The objective of this work is two-fold: a) to propose real-time architectures that
can be deployed on-drone, and b) to improve the state-of-the-art performance using
CSD regularization. Thus, we propose two models consisting of only five convolutional
layers, by discarding the deepest layers and pruning filters of the widely used VGG-16
model [34]. That is, we use the first four convolutional layers of the VGG-16 model
with pruned filters, while the last convolutional layer consists of two channels, each
for a class, since we deal with binary classification problems. The first model runs
in real-time on-drone for 720p (1280×720) resolution image and the second one runs
in real-time for 1080p (1920×1080) resolution image. Thus, we abbreviate the models,
based on this attribute, as VGG-720p and VGG-1080p, respectively. Details on the
proposed model architectures for both 32 × 32 and 64 × 64 input dimensions can be
found in Table 1 and Table 2, for the VGG-720p and VGG-1080p models respectively.
The models for the two cases use same kernels and channels, and use appropriate
stride and pooling to achieve real-time deployment, as it is shown in the Tables. The
evaluation results on the deployment speed for the proposed models are provided in
the Experiments Section.
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(a) Test image (b) YOLO v.2 Prediction for input of size
604×604

(c) Faster R-CNN Prediction for input of size
1000×600

(d) Resulting heatmap for input of size
640×480, utilizing the proposed VGG-1080p
model

(e) Resulting heatmap for input of size
1280×720, utilizing the proposed VGG-1080p
model

(f) Resulting heatmap for input of size
1920×1080, utilizing the proposed VGG-1080p
model

Fig. 2: An aerial high resolution image containing bicycles (2a), predictions utilizing
the YOLO v2 and the Faster R-CNN detectors (2b)-(2c), and the resulting heatmaps
for various deployment resolutions utilizing the proposed VGG-1080p model trained
for bicycle detection (2d)-(2f).
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Table 2: VGG-1080p - Input 32 × 32 / Input 64 × 64

Layer Kernel Stride Pad Max Pooling Channels

conv1_1 3 × 3 2 / 1 0 / 0 - / - 8
conv1_2 3 × 3 1 / 2 0 / 0 X/ - 8
conv2_1 3 × 3 1 / 1 0 / 0 - / - 6
conv2_2 3 × 3 1 / 2 0 / 0 - / - 6
conv_last 8 × 8 1 / 1 0 / 0 - / - 2

3 Class-Specific Discriminant Regularizer

CONV1_1 CONV1_2 CONV2_1 CONV2_2

Class-Speci c 
Regularizer

Euclidean
Loss

Class 1

CONV_LAST
Classi cation

Loss

Fig. 3: Class-Specific Discriminant Regularizer

In this work, we propose a novel regularization method aiming to enhance the perfor-
mance of the proposed lightweight real-time CNN models. The proposed regularization
method aims to exploit the nature of the considered problems, that is, we investigate
two-class problems, where the one class describes a specific concept, while the other
class describes anything than this concept (i.e. genuine versus impostor class). The
proposed regularizer traces its origins to Linear Discriminant Analysis (LDA) [35]
based methods, [12], however based on the extremely wide variation of the impostor
class, we exploit class-specific concepts, [36]. Towards this end, while the classifier
aims to distinguish samples belonging to different classes, we propose to enhance the
genuine class discrimination, by demanding the representations of the feature space
generated by a specific deep neural layer belonging to the genuine class, to come closer
to the class centroid. The L2 norm can be used as similarity measure. The additional
CSD criterion acts as regularizer to the classification objective. We could also demand
for the remaining class to be away from the genuine class centroid, however we do
not proceed in this direction, since the between class separability is preserved by the
classification objective.

Thus, for an input space X ⊆ <d and an output space F ⊆ <q, we denote as
φ(· ;W) : X → F a deep neural network with NL ∈ N layers, and set of weights
W = {W1, . . . ,WNL }, where Wl are the weights of a specific layer l. We also denote
the set of weights up to layer l as Wl = {W1, . . . ,Wl}. Then, the output of layer l for
a given input xi is computed as follows: φ(xi ;Wl) = σl

(
Wl · φ(xi ;Wl−1) + bl

)
, where
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σl(·) is the activation function of layer l, bl the bias term, φ(xi ;Wl−1) the output
of the previous layer, and · denotes a linear operation (e.g. matrix multiplication or
convolution). Hence, we consider a set DN = {x1, . . . , xN} of training samples on X,
and their corresponding representations, φ(xi ;Wl), at the layer l. Each sample is
associated with a class label ci = {0, 1}, where the class 1 corresponds to the genuine
class. We also consider as S = {(xi, ci) : ci = 1} the set of samples belonging to the
genuine class. Then we define the following objective:

min
Wl
JCS D = min

Wl

∑
xi∈S

‖φ(xi ;Wl) − µc‖
2
2, (1)

where µc =
1
|S|

∑
x j∈S

φ(x j ;Wl). Optimizing objective (1) lets the network learn param-
eters such that data samples of the genuine class are closely mapped to their class
centroid. The Euclidean loss layer (Sum of Squares) is used to implement the regular-
izer. The proposed regularizer can be attached to one or multiple neural layers. Thus,
for a deep neural model of NL layers, the total loss in the regularized training scheme
is computed by summing the above losses:

Ltotal = Lclassi f ication +

NL∑
i=1

ηiLe, (2)

where the parameter ηi ∈ [0, 1] controls the relative importance of the Euclidean loss
of each deep layer. In our experiments we attach it to the so-called CONV2_2 layer,
as depicted in Fig. 3. Either Hinge loss or Cross Entropy loss can be utilized as
classifiers. In our experiments we use the Hinge loss. We solve the above optimization
problem using gradient descent. We finally note that it is straightforward to show
that the optimization problem in eq. (1) can be reformulated as an accumulation of
minimization of pairwise distances, [37], that is,

min
Wl
JCS D = min

Wl

∑
xi ,x j∈S

‖φ(xi ;Wl) − φ(x j ;Wl)‖22, (3)

and thus the proposed regularizer can also be implemented in terms of mini-batch
training.

4 Experiments

In this Section, we present the experiments conducted in order to evaluate the proposed
models regarding the deployment speed as well as the proposed regularization method.
Throughout this work, we evaluate the detection speed in terms of frames per second
(FPS), while we use Test Accuracy (Classification Accuracy) to evaluate the proposed
regularizer, since we deal with balanced datasets. Each experiment is repeated five
times, and we report the mean value and the standard deviation, considering the max-
imum value of the Test Accuracy for each experiment. The probabilistic factor is the
random weight initialization. We also provide the curves of the mean Test Accuracy.
Finally, comparisons are conducted against common regularization approaches, that
is L 1, L 2, and Dropout.
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4.1 Datasets

In order to evaluate the performance of the proposed CSD regularizer we conduct
experiments on four datasets, constructed for Crowd, Football Player, Face, and Bicycle
detection. The datasets’ descriptions follow below.

4.1.1 Face

The dataset contains 70,000 train images of faces and equal number of train images
of non-faces, and correspondingly a test set of 7,468 equally distributed face and non-
face images. Images of faces have been randomly selected from the AFLW [38], MTFL
[39], and WIDER FACE [40] datasets. Input images are of size 32×32. Sample images
of the constructed Face dataset are presented in Fig. 4a.

4.1.2 Football Player

The dataset consists of 98,000 train images that contain equal number of football
players and non-football players, and a test set of 10,000 images that also contain
equal number of football players and non-football players. Input images are of size
32 × 32. Sample images of the Football Player dataset are illustrated in Fig. 4b.

4.1.3 Crowd-Drone

The dataset contains 40,000 drone-captured train images of equal number of crowded
scenes and non-crowded scenes, and 11,550 equally distributed crowded and non-
crowded test images. Input images are of size 64×64. Sample images of the constructed
Crowd-Drone dataset are presented in Fig. 4c.

4.1.4 Bicycles

The dataset contains 51,200 equally distributed train images of bicycles (bicycle with
bicyclist) and non-bicycles, and correspondingly a test set of 10,000 images. Input
images are of size 64 × 64. Sample images of the constructed Bicycles dataset are
presented in Fig. 4d.

4.2 Implementation Details

All the experiments conducted using the Caffe Deep Learning framework [41]. We use
the mini-batch gradient descent for the networks’ training. The learning rate (lr) is set
to 10−4, except for the Football dataset on the VGG-720p case, where it is set to 10−5
(since setting lr to 10−4 lead to unstable performance) and the batch size is set to 256.
The momentum is 0.9. All the models are trained on an NVIDIA GeForce GTX 1080
with 8GB of GPU memory for 100 epochs, and can run in real-time when deployed
on an NVIDIA Jetson TX2. The parameter η in eq. (2) for controlling the relative
importance of the regularization loss is set to 0.001. Best results are printed in bold.
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(a) Face Dataset. (b) Football Player Dataset.

(c) Crowd-Drone Dataset. (d) Bicycles Dataset.

Fig. 4: Sample images of the utilized datasets.

4.3 Experimental Results

First, we provide the evaluation results of the proposed models regarding the deploy-
ment speed. We test the performance on a low-power NVIDIA Jetson TX2 module
with 8GB of memory, which is a state of the art GPU used for on-board drone percep-
tion. Additionally, in order to accelerate the deployment speed and achieve real-time
deployment, we utilize TensorRT1, deep learning inference optimizer. TensorRT is a
library that optimizes deep learning models providing FP32 (default) and FP16 opti-
mizations for production deployments of various applications. In Table 3 we provide
the detection speed in terms of FPS for the two proposed architectures and their corre-
sponding image resolution on the NVIDIA Jetson TX2 module without the utilization
of the TensorRT optimizer, with the TensorRT on the default mode, and finally with
TensorRT on the FP16 mode. As we can see TensorRT and in particular the FP16
mode significantly accelerates the proposed models, achieving detection in-real time
for high-resolution images. To gain some intuition about the deployment speed, we
note that state-of-the-art detectors run at notably fewer FPS on Jetson TX2, and also
for lower resolution input images. For example, SSD [16] runs at 6 FPS, for input of
size 300 × 300, SSD with MobileNets [8] runs at 0.66 FPS for the same input, and
YOLO v.2 [15] runs at 10 FPS for input of size 308 × 308, while it runs at 3.1 FPS for
input of size 604 × 604. Finally, the Faster R-CNN [33] runs at 0.9 fps on the Jetson
TX2 module. Finally, we should highlight that the deployment speed regards all the
models, that is with and without the proposed regularizer, since the regularizer does
not affect the deployment speed. That is, based on the Tables 6 and 7 which provide
the accuracy rates of the aforementioned real-time models, the proposed VGG-720p
model for crowd detection, where the input images are of size 64 × 64 runs at 25 fps
with the utilization of TensorRT-FP16, and so does the corresponding baseline model,
trained only with hinge loss, for the task of crowd detection. Correspondingly, the pro-

1 https://developer.nvidia.com/tensorrt

https://developer.nvidia.com/tensorrt
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Table 3: Speed (FPS)

Input Model Jetson TX2 TensorRT-FP32 TensorRT-FP16

32×32 VGG-720p 10.1 18.1 26.3
32×32 VGG-1080p 12.3 16.9 25.7
64×64 VGG-720p 8.7 16.6 25
64×64 VGG-1080p 8.8 18.5 25.6

posed VGG-1080p model for face detection, where the input images are of size 32×32
runs at 25.7 fps with the utilization of TensorRT-FP16, and so does its corresponding
baseline model. The proposed models will be publicly available at the final version of
the paper.

As we have already mentioned the parameter η in eq. (2) for controlling the relative
importance of the regularization loss is set to 0.001, since in general performs better.
A common choice for the L 1 and L 2 regularizers is the value 0.0005. However, we
also conduct more extensive experiments for the evaluation of the CSD regularizer
against the common L 1 and L 2 at various meaningful regularization factors. In
Table 4 we provide the evaluation results for the Face dataset utilizing VGG-720p
model. As we can see, the proposed regularizer accomplishes consistently superior
performance against the compared regularizers. It can also be noticed that as the
regularization factor increases in the L 1 regularizer, the performance considerably
drops, while for bigger values, the model cannot even be trained. In the following, we
set the regularization factor for each of the regularizers to their optimal values, that
is the regularization factor of L 1 is set to 0.0001, of L 2 to 0.0005, and of CSD to
0.001.

Table 4: Face Dataset - VGG-720p model: Comparisons against L 1 and L 2 regular-
izers for different values of regularization factor.

Regularizer 0.0001 0.0005 0.001 0.005 0.01 0.05 0.1

L 1 0.9186 ± 0.0017 0.8984 ± 0.0092 0.7557 ± 0.01871 0.5489 ± 0.059 0.56 ± 0.0049 0.5063 ± 0.00141 0.5056 ± 0.005
L 2 0.9180 ± 0.0032 0.9204 ± 0.0021 0.9189 ± 0.0056 0.9178 ± 0.0016 0.9162 ± 0.0012 0.8988 ± 0.0013 0.8788 ± 0.002
CSD 0.9224 ± 0.0044 0.9227 ± 0.0049 0.9253 ± 0.0028 0.9227 ± 0.0021 0.9237 ± 0.0015 0.9240 ± 0.004 0.9242 ± 0.0013

Subsequently, as we have already mentioned, either Hinge loss or Cross Entropy
loss, can be utilized as classification losses. In our experiments we used Hinge loss,
since we have seen that performs better, however, we also provide evaluation results
utilizing the Cross Entropy, while we also provide indicative comparisons with the
common L 1 and L 2 regularizers, as well as for the Dropout regularization (with
the default probability value: 0.5) for the Face dataset, utilizing the VGG-720p model.
As we observe in Table 5, the proposed CSD regularizer improves the baseline perfor-
mance for both the considered classification losses. We also see that Dropout achieves
improved performance, L 2 regularizer marginally improves the performance, while
the L 1 regularizer harms the performance. We can also observe that the proposed
CSD regularizer is superior over the common L 1 and L 2 regularizers, as well as
over Dropout. Furthermore, since the proposed CSD regularizer can be combined with
the aforementioned regularizers, we also perform experiments utilizing the L 2 and
Dropout regularizers (which improve the baseline performance) in combination with
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the CSD regularizer, and we observe that we can further improve the performance over
the baseline, as well as over each individual regularization method.

Table 5: Face Dataset - VGG-720p model: Test Accuracy

Training Approach Test Accuracy

Only Hinge Loss 0.9191 ± 0.0037
Hinge Loss & L 1 Regularizer 0.9186 ± 0.0017
Hinge Loss & L 2 Regularizer 0.9204 ± 0.0021
Hinge Loss & Dropout 0.9224 ± 0.002
Hinge Loss & CSD Regularizer 0.9253 ± 0.0028

Hinge Loss & L 2 & CSD Regularizer 0.9266 ± 0.002
Hinge Loss & Dropout & CSD Regularizer 0.9268 ± 0.0015

Only Cross Entropy Loss 0.8984 ± 0.0092
Cross Entropy Loss & CSD Regularizer 0.9098 ± 0.0033

In Table 6, we present the mean value and the standard deviation of the Test Ac-
curacy, for the considered training approaches, that is utilizing only Hinge loss, and
Hinge loss with the proposed CSD regularizer, as well as with the compared regulariz-
ers (that is L 1, L 2, and Dropout) on all the utilized datasets for the VGG-720p case,
while in Table 7 we provide the corresponding evaluation results for the VGG-1080p
case. From the demonstrated results several remarks can be drawn. First, we can ob-
serve that the proposed regularizer considerably improves the baseline performance
utilizing both the VGG-720p and VGG-1070p in all the utilized datasets. Furthermore,
we can see that the CSD regularizers is superior against all the compared regularizers,
in all the considered cases, except for one case, that is the Football Player dataset
for the VGG-720p model, where the Dropout regularizer marginally outperforms the
proposed regularizer. In addition, we can see that the Dropout regularizer improves
the performance of the baseline model in the most considered cases while it harms
the baseline performance in two out of eight cases. L 2 regularizer improves the per-
formance only in the half of the considered cases, while the L 1 one generally harms
the performance, except for two cases. Correspondingly, in Figs. 5-8 we provide the
comparison of the mean Test Accuracy of the only Hinge loss training against Hinge
loss & CSD regularized training on all the utilized datasets for both the proposed
model architectures, where the improved performance is also depicted.

Table 6: Test Accuracy: VGG-720p

Training Approach Crowd-Drone Football Player Face Bicycles

Only Hinge Loss 0.9327 ± 0.0089 0.9734 ± 0.007 0.9191 ± 0.0037 0.9684 ± 0.0029
Only Hinge Loss & L 1 0.9316 ± 0.009 0.9734 ± 0.0088 0.9186 ± 0.0017 0.9638 ± 0.0039
Only Hinge Loss & L 2 0.9238 ± 0.0066 0.9814 ± 0.0013 0.9204 ± 0.0021 0.9668 ± 0.0025
Only Hinge Loss & Dropout 0.9227 ± 0.0021 0.9830 ± 0.0023 0.9224 ± 0.002 0.9716 ± 0.0031
Hinge Loss & CSD regularizer 0.9399 ± 0.0087 0.9820 ± 0.0024 0.9253 ± 0.0028 0.9722 ± 0.0026

Furthermore, in order to validate our claim that the proposed regularizer is ap-
plicable to various network acrhitectures for binary classification problems, we also
perform experiments utilizing a much more complex model than the proposed real-time
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(b) VGG-1080p

Fig. 5: Crowd-Drone
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Fig. 6: Face
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Fig. 7: Bicycles
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Table 7: Test Accuracy: VGG-1080p

Training Approach Crowd-Drone Football Player Face Bicycles

Only Hinge Loss 0.9270 ± 0.027 0.9785 ± 0.007 0.8787 ± 0.0015 0.9479 ± 0.0153
Only Hinge Loss & L 1 0.9220 ± 0.012 0.8757 ± 0.0176 0.8814 ± 0.0057 0.8699 ± 0.01339
Only Hinge Loss & L 2 0.9296 ± 0.0095 0.9730 ± 0.0095 0.8801 ± 0.009 0.9460 ± 0.009
Only Hinge Loss & Dropout 0.9284 ± 0.0199 0.9804 ± 0.005 0.8682 ± 0.0029 0.9535 ± 0.077
Hinge Loss & CSD regularizer 0.9380 ± 0.0026 0.9884 ± 0.004 0.8828 ± 0.0024 0.9603 ± 0.0025

models. That is, we utilize the common VGG-16 [34] model, discarding only the fully
connected layers and we apply the proposed regularizer. We should highlight that the
utilized modified fully convolutional VGG-16 model (abbreviated as FC-VGG16) is out
of memory even in a GTX 1080 for high-resolution input. Furthermore we perform
comparisons against competitive regularizers (i.e. L 1, L 2, and Dropout). In Table 8
we present the evaluation results utilizing the FC-VGG16 model in the Face dataset.
As we can observe the CSD regularizer improves the baseline performance, not only
utilizing lightweight models as the specific application imposes, but also utilizing more
complex models. Furthermore, we can observe that the CSD regularizer is superior
over all the compared ones.

Table 8: Face Dataset: FC-VGG16

Training Approach Test Accuracy

Only Hinge Loss 0.9393 ± 0.0215
Only Hinge Loss & L 1 0.9348 ± 0.0001
Only Hinge Loss & L 2 0.9463 ± 0.0033
Only Hinge Loss & Dropout 0.9469 ± 0.0054
Hinge Loss & CSD Regularizer 0.9498 ± 0.004

Finally, we conducted a post-hoc Bonferroni test [42], for ranking the proposed
regularization method and the compared regularizers and evaluating the statistical
significance of the obtained results. The performance of two methods is significantly
different, if the corresponding average ranks over the datasets differ by at least the
critical difference (CD):

CD = qa

√
m(m + 1)

6D
, (4)

where m is the number of methods compared, D is the number of datasets and critical
values qα can be found in [42]. In our comparisons we set α = 0.05. We consider as
number of the datasets as eight in the performed test, since we evaluate the perfor-
mance of all the training approaches using both the proposed models (i.e. VGG-720p
and VGG-1080p). The compared methods are five, that is the proposed regularizer, as
well as the compared regularizers (i.e. L 1, L 2, Dropout) which are compared with
a control method which is the only hinge loss training approach. The ranking results
are illustrated in Fig. 9. The vertical axis depicts the five methods, while the horizontal
axis depicts the performance ranking. The circles indicate the mean rank and the in-
tervals around them indicate the confidence interval as this is determined by the CD
value. Overlapping intervals between two methods indicate that there is not a statis-
tically significant difference between the corresponding ranks, while non-overlapping
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intervals indicate that the compared methods are significantly different. As we can
observe, the proposed regularizer is significantly different against the control method,
that is the only hinge loss training approach, while none of the compared regularizers
is statistically different against the baseline approach. We could also note the proposed
regularizer is also statistically different against the L 1 and L 2 regularizers.

0 1 2 3 4 5 6

CSD Regularizer

Dropout

L2

L1

Baseline

Average Rank

 

 

Fig. 9: Post-Hoc Bonferroni Test

5 Conclusion

In this paper, lightweight models capable of running on-drone for high-resolution video
input, for various binary classification problems have been proposed, in the context of
media coverage of certain sport events by drones. Subsequently, a novel Class-Specific
Discriminant regularizer was proposed, in order to improve the generalization ability
of the proposed real-time models, exploiting the nature of the considered two-class
problems. The experimental evaluation on four datasets indicated the effectiveness of
the proposed regularizer in enhancing the generalization ability of the proposed models.
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