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Abstract—In this paper, we propose a novel human crowd detection
method that uses deep Convolutional Neural Networks for drone flight
safety purposes. The first contribution of this work is to provide lightweight
architectures, as restricted by the computational capacity of the specific
application, capable of effectively distinguishing between crowded and non-
crowded scenes from drone-captured images, and provide crowd heatmaps
which can be used to semantically enrich the flight maps by defining no-fly
zones. The second contribution of this work is to propose a novel generic
regularization technique, based on the Graph Embedding framework, appli-
cable to different deep architectures for generic classification problems. The
experimental validation is performed on a new dataset constructed for the
task of human crowd detection from drone-captured images, and indicates
the effectiveness of the proposed detector, as well as of the proposed
regularizers in terms of classification accuracy. Finally, since the proposed
regularization scheme is applicable in generic classification problems, we
have also conducted experiments on two additional datasets, where the
enhanced performance of the regularizers is also validated.

Index Terms—Drones, Crowd detection, Deep Learning, Regularization,
Graph Embedding, Convolutional Neural Networks.

1 INTRODUCTION

The recent introduction of drones in a wide spectrum of ap-
plications including rescue, surveillance, and entertainment, is
accompanied by the requirement of their safe operation. Except
for the robustness to failures, a primary step to settle the issue of
safety constitutes in defining no-fly zones for crowd avoidance,
since a drone may fly in vicinity of crowds, and is potentially
exposed to environmental hazards or unpredictable errors and
malfunctions, that render the emergency landing inevitable.
Furthermore, drone flight regulations in several Countries’ na-
tional legislation, especially in European Countries, request a
safe distance to be maintained between the drone and crowds,
and the drone to never fly over a crowd. For example, the drone
flight regulation rules for UKF_] define that drones should not
be flown within 50m of people and within 150m of a crowd
of over 1000 people, in Ital}ﬁ it is not allowed for the drone

1. http://www.caa.co.uk/Commercial-industry/Aircraft/Unmanned-
aircraft/Small-drones/Permissions-and-exemptions-for-commercial-work-
involving-small-drones/

2. http://www.enac.gov.it/repository/ContentManagement/information/
N1220929004/Regulation_RPAS Issue_2_Rev%202_eng.pdf

to operate at a distance less than 50m, whereas in GermanyE]
it is prohibitive for a drone to operate at a distance of less
than 100m from crowds (where an assemblage of more than
12 individuals is defined as crowd). Therefore, it is crucial
for the drone to be capable of detecting crowds in order to
define no-fly zones and proceed to re-planning during the flying
operation. This could also allow for diminishing the restrictions
for autonomous flying of drones ensuring the crowds’ safety in
the flying area. Towards this end, in this work we deal with the
problem of crowd detection from drones, for crowd avoidance
using the state-of-the-art deep Convolutional Neural Networks
(CNN), 11, [2].

During the recent years, deep CNNs have been proven as one
of the most promising research directions in computer vision,
providing significant results in a plethora of computer vision
tasks. More specifically, deep CNNs have been successfully ap-
plied in image classification [3]], [4], object detection [3]], [6]], [7],
face recognition [8]], image retrieval [9], digit recognition [10],
|11}, pose estimation [12], pedestrian detection [13], and scene
recognition [14]. The major reasons underlying their success are
the availability of large annotated datasets, and the Graphics
Processing Units (GPUs) computational power and affordability.

Deep CNNs consist of a number of convolutional and sub-
sampling layers with non-linear activations, usually followed
by fully connected layers. That is, the neural network accepts
as input a three dimensional tensor with dimensions (i.e., width
and height) equal to the dimensions of the input image, and
depth equal to the number of color channels (that is three in
RGB images). Three dimensional filters/kernels are learned and
applied in each layer where convolution is performed and the
output is propagated to the neurons of the subsequent layer for
non-linear transformation, using appropriate activation func-
tions. After a series of convolutional and sub-sampling layers,
the structure changes to fully connected layers and single di-
mensional signals. These activations are usually used as feature
representations in classification, retrieval, and clustering.

In this paper, we propose a crowd detection method for
drone flight safety purposes that utilizes fully convolutional
deep CNNs. That is, we predict for each patch a probability of
crowd existence, and then we provide a semantic heatmap of

3. http://www.lba.de
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the estimated probability of existence of crowd in each location
within the captured scene, instead of a box surrounding the
crowded area. Therefore, we describe the whole procedure as
detection. We aim to provide a lightweight deep CNN model,
as restricted by the computational capacity of the specific appli-
cation, that can effectively distinguish between crowded and
non-crowded scenes, in drone-captured images, and provide
semantic heatmaps that can be used to semantically augment
the flying zones. The fully convolutional nature of the proposed
model is crucial in handling input images with arbitrary dimen-
sion, and estimating a heatmap for the crowded areas. This will
allow for semantically annotating the corresponding maps and
defining no-fly zones. Furthermore, this will allow for handling
low computational and memory resources on-drone whenever
other processes occur (e.g., re-planning, SLAM, etc.), and only
low-dimensional images can be processed on the fly for crowd
avoidance.

Additionally, a principal direction of this work is to propose

regularization techniques in order to prevent overfitting and
enhance the generalization ability of our model. Generally, this
constitutes a major issue in deep learning algorithms, since neu-
ral networks are prone to overfitting due to their high capacity.
To this end, we propose a regularization scheme based on the
Graph Embedding (GE) framework [15]. Recently, the Extreme
Learning Machine algorithm [16], as well as a novel dimension-
ality reduction algorithm that uses the Mutual Information as
an optimization criterion [17]], have been successfully integrated
in the GE framework. Thus, in this work we aim to introduce
the ideas described in the GE framework in Deep Learning, by
proposing a multiple-loss architecture as a regularized training
method. The above method is generic and can be applied in sev-
eral deep learning architectures for classification purposes. Note
also, that the proposed regularization scheme acts in activation
level, as compared with other regularizers, like the standard
L1/L2 ones, which act in weights level, penalizing large weights
during the network optimization. The experimental evaluation
on the constructed drone crowd dataset, as well as on two
additional classification datasets, validates the effectiveness of
the proposed regularizers in accomplishing better performance
in terms of accuracy.
Generally, multitask-learning [I18] constitutes a way of im-
proving the generalization performance of a model. In [19]
the authors introduced techniques emerged in semi-supervised
learning into the deep learning domain. That is, they combined
a supervised learner with an unsupervised regularizer perform-
ing semi-supervised learning. Subsequently, in [20] stimulated
training of deep neural networks for network regularization
and robust adaptation is investigated. More specifically, first
stimulated deep neural network regularization is applied to large
vocabulary recognition tasks, achieving consistent gains, and
second, based on the activation patterns obtained by stimulated
learning, a smoothing approach is proposed to regularize the
deep neural network adaptation schemes. Finally, in [21] con-
temporaneous with our work, the authors propose a framework
for activation regularization aiming to improve interpretabil-
ity and regularization in deep neural models. Specifically, the
framework allows appropriate target patterns to be interpreted
on activation function outputs. The target patterns are intro-
duced to induce desired information such as smoothness, and
a regularization term is added to the cost function, encouraging
activation outputs to perform similarly to the target pattern.
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The main contributions of this paper can be summarized as
follows:

« A fully convolutional deep neural model for crowd detec-
tion from drones towards crowd avoidance is proposed.

« A novel regularization scheme, based on the GE frame-
work, applicable to different deep architectures for generic
classification problems is proposed.

« A new drone crowd dataset has been constructed, in order
to validate the proposed method since there is no such
dataset publicly available.

The remainder of the manuscript is structured as follows.
Section [2] discusses the related work. The proposed fully con-
volutional model for crowd detection, a brief review of GE
framework, as well as the proposed graph embedded CNN are
presented in detail in Section [3] In Section [4] we present the
constructed drone crowd dataset. Subsequently, in Sectionwe
provide the implementation details of the proposed method as
well as the experimental evaluation of our method. Finally, the
conclusions are drawn in Section [6]

2 ReLatep WoRk

To the best of our knowledge, crowd detection in images
captured from drones is an uncharted territory. A first attempt
utilizing the state-of-art deep CNNs is presented in [22], where
a CNN pretrained model is finetuned for the task of crowd
detection, proposing a two-loss architecture. In this section we
review the existing literature regarding the crowd detection task
from images that are not captured by drones, while we also
briefly refer to research works in the general field of crowd
analysis that utilize deep learning techniques.

Even though there are a lot of works in the crowd analysis
domain (e.g. crowd counting [23], abnormal crowd behaviour
analysis [24] etc.), the research in crowd detection is very
limited, since these works consider crowded scenes. In |23], the
authors propose a crowd detection method based on spatiotem-
poral analysis of the video sequence. Subsequently, an algorithm
for crowd detection in still images, utilizing a statistical, Pois-
son model of occurrences of quantized SIFT words across an
image [26], is proposed. Finally, in |27] the authors proposed
texture classification methods for detecting high density crowds
in aerial non-drone images.

Over the last few years, several works that use deep CNNs
have been emerged in the field of crowd counting, analysis and
understanding. A deep learning framework for crowd density
estimation in extemely dense crowd images, is proposed in
[28]. In [29] the authors also propose a model, trained with
two related learning objectives for crowd counting, while in
[30] the authors propose a Multi-column Convolutional Neural
Network architecture to estimate the crowd count. Subsequently,
in [31] the authors develop a multitask deep model to jointly
learn and combine appearance and motion features towards
crowd understanding, while in [32] a crowd abnormal event
detection method using deep CNNs is proposed. In [33] a
switching CNN that leverages variations of crowd density in
an image in order to enhance the accuracy and localization
of the estimated crowd count, is proposed. In [34] a method
for computing an estimation of the amount of individuals in
highly dense crowd images relying on multiple sources, like
low confidence head detections, repetition of texture elements,
and frequency-domain analysis to estimate counts, is proposed.



Subsequently, in [39], the authors address the problem of human
detection in dense crowd, exploring the utilization of spatial
or contextual constraints for improving human detection. In
[36] a tracker capable of tracking hundreds of people in ex-
tremely dense crowds is proposed, by formulating online crowd
tracking as Binary Quadratic Programing. Subsequently, in [37]
a deep learning approach to detect real-world anomalies in
surveillance videos is proposed, exploiting both normal and
anomalous surveillance videos. Finally, in [38] a new approach
for autonomous navigation for low-altitude UAVs in urban
areas is proposed. The method for a given mission computes
safe waypoints, that dynamically adapt the flight plan to the
UAVs surroundings by avoiding objects like cars or pedestrians.
However, we note that all these works do not consider images
captured from drones, and they also consider crowded scenes.
Thus, since the crowd first need to be detected, this highlights
the demand for algorithms able to efficiently distinguish between
crowded and non-crowded scenes.

3 Proprosep MetHoD

In this work, we propose a deep learning regularization tech-
nique utilizing the concepts described in the GE framework,
for human crowd detection in images captured from drones. To
this aim, we utilize the deep CNNs. Specifically, we train a fully
convolutional neural model.

3.1 Fully Convolutional Neural Network

The underlying reasons behind the fully convolutional architec-
ture are presented below. Firstly, the convolutional neural layers
preserve spatial information due to the spatial arrangement of
the activations, in opposition to the fully connected layers that
discard it since they are connected to all the input neurons. That
is, the convolutional layers inherently produce feature maps
with spatial information. This attribute is generally beneficial in
a series of computer vision tasks. For example, in |9], [39] it is
shown that the utilization of the convolutional layers for feature
extraction provides superior performance in the retrieval task.
In this way, the proposed classifier also benefits from the con-
volutional layers, since it decides on the crowd existence based
on the convolutional features. Additionally, an architecture
without fully connected layers drastically decreases the amount
of the model parameters, and therefore the computational cost is
restricted, since the fully connected layers of deep CNNs usually
occupy the most of the model parameters. For example, in VGG
[40] the fully connected layers comprise 102M parameters out
of a total of 138M parameters, while in AlexNet [3] they occupy
S9M out of the 61M parameters. Furthermore, this also allows
arbitrary-sized input images, as the fixed-length input demand
concerns the fully connected layers. As a result, this allows
for using low-resolution images, that can be proven beneficial
in the specific application, since it can further restrict the
computational cost. We should note that the fully convolutional
choice does not affect the memory bandwidth needed, however
it allows for adjusting the complexity, e.g. with stride, which
is not feasible in models with fully connected layers. Finally,
we note that state-of-the-art object detectors, like SSD [6], and
YOLO9000 [7] also use fully convolutional architectures.

3.2 Graph Embedding and Dimensionality Reduction

GE [15] unifies a series of dimensionality reduction algorithms
within a common optimization scheme. That is, in GE each
algorithm can be considered as the direct graph embedding that
describes certain desired statistical or geometrical properties of
the dataset. More specifically, let G = {X, W} be an undirected
weighted graph, with vertex set the data points x; € R arranged
in a data matrix X = [x1,,...,Xy], where N is the number
of samples, d is the feature dimension, and W € RV is the
similarity matrix. The GE of the graph G is then defined as an
algorithm to find the desired low dimensional representation
of the data that best preserves the relationships between the
vertex pairs of G. The graph G can be seen as an intrinsic
graph. Additionally, a penalty graph GP = {X, WP} can also
be defined, such that the weight matrix, W? € RMN_ of the
graph penalizes specific characteristics of the data structure. For
simplicity, we present the one-dimensional case, assuming that
¥ =[y1,...,yn]" is the vector containing at each element y; the
projection of each data sample x;.

Thus, the generic graph criterion to be optimized is:

N
y" = argmin Z lly: = 1l Wij = arg miny” Ly, oy
Y'By=q {3, y'By=q
i#]

where L is the graph Laplacian defined as L = D - W, D is
the diagonal degree matrix defined as Dy = ¥;; Wij, Vi, B is
the constraint matrix to avoid trivial solutions and is typically a
diagonal matrix for scale normalization, or the graph Laplacian
of G”, that is B = L? = D? — WP, and ¢ is a constant. The
matrices W and B allow to formulate different dimensionality
reduction algorithms.

If we assume that the vector y is obtained by the linear
projection y = XTw, where w € R? is the projection vector, then
the objective becomes:

N
w" = argmin Z”wa,' - wa,-||§ Wi =
wTXBXTw:q, ij=1,
or wiw=q i#j 2)
argmin w! XLXw
wl XBX"w=q,
or wlw=q

The Principal Component Analysis (PCA) [41] seeks for a
projection that maximizes the variance of the data. That is,
it finds and removes the projection direction with minimal
variance, i.e.,

w* = arg min wlCw, 3)
wlw=1

with
1< 1 1
C= ;(x,« — D) - %) = N X~ NeeT)XT, @)

where e is an N-dimensional vector with ones, I is an identity
matrix, C is the covariance matrix and X is the mean of all
samples. In graph embedding, the intrinsic graph characterizes
the properties of the projections that need to be found and
discarded, that is, the directions of small variance in PCA.
Thus, over the GE view, the similarity matrix W and and the
constraint matrix B are as follows for the PCA algorithm:
Wij=xi#jB=L



The Linear Discriminant Analysis (LDA) [42] algorithm
seeks for the most discriminative projection directions by mini-
mizing the ratio between the intraclass and interclass scatters:

* : T . WTSWW . WTSWW
w' = argminw’ Syw = argmin — =argmin ———, ()

wISpW=d W WiSpw wo wiCw

with
N N. 1
Sw= ) (xi—&)(x; — %) = X(I - eeHX", (©)
N

Sp =) n(® - HE - B = NC-Sw, v

i=1
where X¢ is the mean of the c-th class, and e is an N-
dimensional vector with e“(i) = 1, if ¢ = ¢; and O otherwise.

Hence, the similarity matrix W and and the constraint
matrix B are as follows for the LDA algorithm:
Wi = 6"[" B=1- —ee

n

3.3 Graph Embedded CNN

In this work, considering a deep neural architecture for clas-
sification purposes with a Softmax Loss, we propose to attach
one or multiple additional Loss layers which impose certain
constraints, motivated by the GE algorithms. The Euclidean
Loss (sum of squares) layer can be easily employed to implement
them, however more sophisticated losses can also be defined.
We should also note that in this work we utilize the widely
used Softmax Loss layer in deep neural networks [40], [43],
[3, however the Hinge Loss layer could also utilized for the
classification task.

Thus, for a set of N input images X = {X;,i = 1,...,N} we
consider the corresponding representations, yl.L, of the feature
space generated by a specific deep neural layer, L, as the
corresponding projection of training data in the GE concept.
Then, the Softmax Loss is defined as:

s = T lzklog(l’:k) (8)
193)

i=1 k=1

where K is the number of classes, /;x € {0,1} is a binary
indicator that takes the value 1 if the class label k is the correct
classification for the sample i, and p;x is the predicted softmax
probability the sample i to belong to the class k.

The Euclidean loss for a target representation #; which is
determined by a specific GE algorithm is defined as:

N
_ 1 L 2
Le= o Z] lly" - till2 )

We note that the Euclidean loss can be attached to all the deep
neural layers. Thus, for a deep model of Ny layers, the total loss
in the regularized training scheme is computed by summing the

above losses:
N
L=L+ ) nile,
i=1

where the parameter 7; € [0, 1] controls the relative importance
of the Euclidean loss of each deep layer, and 7; = 0 means that
no regularizer is attached to the i-th layer. The Euclidean loss
layer acts as a regularizer, which can transfuse the ideas of GE

10)
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in deep learning. It can be attached to all the layers of the deep
architecture, to individual layers, as well as to combinations
of layers. Furthermore, different regularizers, motivated by dif-
ferent GE approaches, can be simultaneously applied to a deep
neural layer.

In the following subsection we describe the Discriminant
Analysis (DA) regularization approach and the Minimum En-
closed Ball MEB) regularization, and we accordingly define
their objectives using appropriate target representations in the
Euclidean Loss layer. We note that the proposed regularization
method is straightforward, and can materialize all the GE
algorithms (e.g. the Marginal Fisher Analysis [15], etc.).

3.3.1

Inspired by the LDA method, that aims at best separating
training samples of different classes, by projecting them into
a new low-dimensional space, that maximizes the between-class
separability while minimizing their within-class variability, we
propose a new regularized training method. Thus, the new
model, except for the softmax loss layer that preserves the
between class separability, includes a Euclidean loss layer that
aims to bring the training samples of the same class closer to
the class centroid.

That is, considering a labeled representation (yiL, l;), where
yf‘ is the image representation and /; is the corresponding image
label, we aim to minimize the squared distance between yf‘ and
the mean representation of its class.

Let X = {X;,i = 1,...,N} be the set of N images of the
training set, YL = {yiL,i = 1,...,N} the set of N feature
representations emerged in the L layer of a deep neural model,
and C' = {c;,k = 1,...,K'} the set of K' representations of
the i-th image, belonging to the same class. We compute the
mean vector of the K’ representations of C' to the certain image
representation y-, and we denote it by pl. That is, gl = & Yy ¢.

Then our goal is defined by the following optimization
problem:

Discriminant Analysis Regularization

min Jpy = rmn ley, A 1)

yreyt

Thus, the total loss is formulated as:

1 N K
_N Z Z l,klog(p,k) + - Z”yl - ”0”2

i=1 k=1

a2)

We solve the above optimization problem using gradient de-
scent. It is noted that the proposed regularizer can be imple-
mented over the entire dataset, for the mean vectors of all the
samples belonging to one class, as well as in terms of mini-
batch training. In our experiments we implement it in terms of
mini-batch training. That is, the mean vectors of each class are
computed for each batch of N, training samples.

3.3.2 Minimum Enclosing Ball Regularization

In this regularization approach, we apply an objective which
aims at finding a projection that minimizes the variance among
the training samples, and we abbreviate it as MEB. The rationale
behind this idea is rooted in the radius-margin based Support
Vector Machines (SVM) [44], [45], |46]]. More specifically, in
[47], it is stated that the generalization error bound of the
max-margin SVMs depends on not only the squared separating
margin, y%, of the positive/negative training samples, but on



the radius-margin ratio, R2/72, where R is the radius of the
minimum enclosing ball (MEB) of all the training samples. For
a fixed feature space, the dependency of the error bound on the
radius can be ignored in the optimization procedure, since the
radius, R, is constant. However, when R is determined by the
MEB of the training data, the model has the risk that the margin
can be increased by simply expanding the MEB of the training
data in the feature space. In order to remedy this problem, an
algorithm that optimizes the error bound taking account of both
the margin and the radius, in the context of Multiple Kernel
Learning, is proposed in [45]. In [48]], the authors also propose
to incorporate a radius-margin bound as a regularization term
into a deep model for 3D human activity recognition.

Towards this end, as the softmax layer aims to distinguish
the training samples’ feature representations belonging to dif-
ferent classes, since feature representation especially of the
negative class may extremely expanded in the feature space
generated by the neural layer, we propose to attach a regulariza-
tion layer that aims at shrinking the radius of the MEB of the
training samples.

Let us denote by X = {X;,i = 1,..., N} the set of N training
images, and by Y~ = {yk,i = 1,...,N} the set of N feature
representations of the deep neural layer, L. We abbreviate as
RyEep, the radius of the minimum enclosing ball of all the
training samples. The squared radius is formally expressed by
the following equation:

()

2 .
Ruyes” —rlgnnR st |lyF - yoll < R%, Vi,
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where y(L) is the centroid of all the training samples yiL.

However, this definition suffers from a major shortcoming.
That is, it can not be applied in terms of mini-batch training,
since it requires the centroid of all the training data. In order
to tackle this issue, we utilize an approximation of the above
definition. We express the radius of the minimum enclosing
ball of the training data, using the maximum pairwise distance
over all pairs of training samples. That is:

RMEB = max”yl -Y; ”2 (14)
In [46] the authors proved that the radius Rypp is well
approximated by Ryzp with the following inequality:

1+ V3.
2

Thus, instead of minimizing the squared radius of the small-
est sphere enclosing all the training samples, for simplicity we
minimize the squared diameter that is defined by the maximum
pairwise distance over all pairs of the training samples, since
this does not affect the solution of the minimization problem,
and following also the work in [46].

Subsequently, since the approximated radius is defined over
all the pairs of training samples, we first formulate the following
minimization problem utilizing the softmax function over the
max operator which is non-smooth, as it is shown in [48]
and then we further relax the approximated radius to make it
appropriate for mini-batch training:

Ryep < Rues < MEB 15)

min Jyep = mln Zkully, — ¥illz. (16)

yreyL

where
LAIE-YjI
kij = 55 LY an
i, /

measures the correlation of the two samples, while the
parameter a controls the approximation degree to max operator.
When a is infinite, the approximation is identical to the max
operator, while when a = 0, k;; = # The relaxed definition of
eq. {[6) allows for defining the minimization objective in terms
of mini-batch training, instead of the whole dataset. That is, for
a set B of training samples’ feature representations of a batch,

eq. {I6) becomes:

D killyh - I,

€,
i yiyhes

min Jyep = rmn (18)
v

yreyt

Thus, for a = 0, k;; = IZ’ where |8B| is the cardinality of set
B, the minimization problem can be formulated as follows in
terms of mini batch training:

mm 9 = mm lly; — || s 19)
Yoy MEB = vhe Z Y Hilz

Y LeB
where g = IB\ 2iytes y]

The analysis of tﬁe above equality can be found in [A]
Hence, the total loss is formulated similarly to @ and the
optimization problem is solved using gradient descent.

We note that Support Vector Data Description method, [49],
inspired by the Support Vector Classifier, proposes a MEB-like
objective in the One Class Classification problem, as the main
objective in order to find the outliers. However, the proposed
regularizer, as mentioned previously, is rooted in the radius-
margin based Support Vector Machines (SVM) [44]], [49], [46],
and proposes the MEB objective as a regularization in the main
classification objective, in order to improve the generalization
ability of the binary classifier.

3.3.3 Graph Embedded Regularization Framework

As we have already stated, different regularizers, motivated
by different GE approaches, can be defined, apart from the
DA and MEB. That is, the proposed regularization method is
straightforward, and can materialize all the GE algorithms, and
thus it can be seen as a generic graph-embedded regulariza-
tion framework. In this subsection, we define two additional
regularizers inspired by the Locally Linear Embedding (LLE)
algorithm, [50], as well as by Clustering-based Discriminant
Analysis (CDA), [51].

LLE-inspired regularization: Motivated by the LLE al-
gorithm, which maps the input data to a lower dimensional
space in a manner that preserves the relationship between
the neighboring samples, a corresponding regularizer can be
implemented. That is, we consider a set X = {X;,i =1,...,N} of
N images of the training set, and a set YL = {yl.L,i =1,...,N}
of their corresponding feature representations emerged in the L
layer of a deep neural model. For each feature representation
¥E, we consider the set A; that contains its nearest neighbors.
Then our goal is to minimize the Euclidean distance between
each feature representation yiL and the mean vector g, of its
nearest representations.



Thus, the following optimization problem is defined:

i 2
ymlyn£ Jre = min ley, = Holly, (20)
where pi = ﬁ Zij.eN(,-) y?, and |N;| denotes the cardinality of
set N(i).

However, we should note that finding the nearest representa-
tions for each training sample, comes with additional computa-
tional cost.

Clustering-based DA regularization: The problem
of crowd detection is a two-class problem of crowded and
non-crowded scenes. Thus, in the proposed DA regularizer we
consider one centroid for crowded and one for non-crowded
scenes and the proposed regularizer brings each training sample
closer to the corresponding centroid. However, the nature of
the problem, that is the one class describes crowded scenes,
while the other class describes anything than crowd, motivates
us to explore the number of centroids, aiming at exploiting
the extremely wide variation of non crowded scenes, but also
variations in crowded scenes (e.g. crowd density, distance,
viewpoint etc.). Thus, inspired by the CDA, which assumes a
multimodal data distribution inside classes where each class
consists of several subclasses, and aims to enhance the between
class discrimination by minimizing the scatter within each
subclass, while separating subclasses belonging to different
classes, we propose the CDA regularizer.

That is, let X = {X;,i = 1,...,N} be the set of N images
of the training set, Y = {yiL,i =1,...,N} the set of N feature
representations emerged in the L layer of a deep neural model.
Let also S be the set of all image representations yiL, that
belong to the k-th subclass of the c-th class.

Then, the following optimization problem is defined:

min, Jeos = min an — iy, @

yreyt

where p = ﬁ ZyIL_E Sk ij., |S¥| is the cardinality of set S, and
My = fer, if yE e S*.

However, this approach also comes with additional computa-
tional cost of using a clustering algorithm in order to define
subclasses in each class.

4 Crowbp-DroNe DATASET CONSTRUCTION

‘We have constructed a new Crowd-Drone dataset, in order to
evaluate the performance of the proposed method, since there is
no publicly available crowd dataset of drone-captured videos
and images. That is, we created a new dataset by querying
specific keywords to the Youtubfﬂ video search engine. More
specifically, we collected 57 drone videos using keywords that
describe crowded events (e.g. marathon, festival, parade, polit-
ical rally, protests, etc). We also selected non-crowded videos
by searching for unspecified drone videos. Non-crowded images
(e.g. cars, buildings, bikes, etc.) also randomly gathered from
the senseFly-Example-droneﬂ as well as the UAVlZfﬂ datasets.
Sample frames from the gathered video sequences are provided

4. http://www.youtube.com/
5. https://www.sensefly.com/drones/example-datasets.html
6. https://ivul.kaust.edu.sa/Pages/Dataset-UAV123.aspx

Fig. 2: Sample regions of the Crowd-Drone dataset.

in Figm Subsequently, we manually annotated crowded regions
from the extracted frames. A total number of 5,920 crowded
regions and an equal number of non-crowded images formu-
lated the Crowd-Drone dataset. Sample annotated regions are
provided in F'Lglzl The following pre-processing steps applied
to the formed dataset: channel swapping to BGR, rescaling to
[0, 255] and mean substraction.

5 EXPERIMENTS

In this section, we present the experiments performed in order
to evaluate the proposed method. Throughout this work, we
use Test Accuracy to evaluate the proposed methods for the
crowd detection problem. Qualitative results are also provided
through the crowd heatmaps. The proposed CNN model serves
as baseline for the proposed regularization approaches. We
also compare the proposed approaches with the L1 and 1.2
regularization schemes. In the following, we first describe the
utilized CNN architecture, then we report the implementation
details of the proposed method, and finally we present the
evaluation results.

The proposed Crowd Detector as well as the links of the uti-
lized drone videos are available at: https://github.com/mtzelepi/
GraphEmbedded CNN|

5.1 CNN Model

The proposed CNN model contains six learned convolutional
layers. The network accepts RGB images of size 128 x 128 x 3.
The output of the last convolutional layer is fed to a Softmax
layer which produces a distribution over the 2 classes of crowd
and non-crowd. Each convolutional layer except for the last one
is followed by a Parametric Rectified Linear Unit (PReLU) acti-
vation layer which learns the parameters of the rectifiers, since
it has been proven to enhance the classification results [52.
Max-pooling layers follow the first and the fifth convolutional


http://www.youtube.com/
https://www.sensefly.com/drones/example-datasets.html
https://ivul.kaust.edu.sa/Pages/Dataset-UAV123.aspx
https://github.com/mtzelepi/GraphEmbeddedCNN
https://github.com/mtzelepi/GraphEmbeddedCNN
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Fig. 4: In (a) the DA regularizer is attached to the deep neural
layers of the proposed CNN model. In (b) the MEB regularizer
is correspondingly attached to all the neural layers, while in
(c) both the proposed regularizers are attached to the network
layers. In each of the three cases the regularizers can be attached
on not only all the layers but on individual ones as well as on
combinations of layers.

layers, aiming to reduce the spatial size of their input and the
number of the parameters contributing also to the overfitting
control, while a response-normalization layer is utilized after
the first pooling layer, in order to aid generalization. A Dropout
layer [53] with probability 0.5 follows the fifth convolutional
layer aiming to reduce overfitting. An overview of the proposed
model is illustrated in Figure[3]

5.2

The proposed CNN model was implemented and trained using
the Caffe Deep Learning framework [54]. We use the mini-batch
gradient descent for the network training. That is, an update
is performed for every mini-batch of N, training samples. The
learning rate is set to 1075, and the batch size is set to 64.
The weight decay is 0.0005, and the momentum is 0.9. All the
models are trained on an NVIDIA GeForce GTX 1080 with 8GB
of GPU memory.

As mentioned before, the proposed regularizers can be ap-
plied on all the neural layers, on individual layers, as well as on
multiple layers. Additionally, both the proposed regularizers can
be applied on a certain layer. The idea behind this approach is
that the regularizers attempt to simultaneously shrink the train-
ing samples, and bring closer samples of the same class, while
the softmax layer aims at separating the samples of different
classes. In our experiments, apart from the case we apply the
regularizers on all the convolutional layers, we also examine to
apply them on the CONVS, on both the CONV4 and CONV5, on
CONV3, CONV4 and CONVS5, and finally on CONV2, CONV3,
CONV4 and CONVS. We also apply both the DA and the MEB
regularizers on all the convolutional layers. The above sets of
experiments are illustrated in Fig. [Z_I} To do this, we attach

Implementation Details

Training Approach
Softmax
Softmax & L1
Softmax & L2
Softmax & MEB
Softmax & DA

Test Accuracy
0.9405 + 0.0079
0.9435 + 0.009
0.9422 + 0.005
0.9541 + 0.0072
0.9546 + 0.0061

TABLE 1: Crowd Dataset: Test Accuracy

an additional pooling layer on each of these layers, the so-
called Maximum Activations of Convolutions (MAC) [39] layer
that implements the max-pooling operation over the width and
height of the output volume, for each of the 128 feature maps of
the CONVS layer, correspondingly of the 256 feature maps of
the CONV4 and CONV3 layers, and so on. The MAC layer on
CONVS5 outputs a 128-d vector, while the MAC layer on CONV4
and CONVS3 layers outputs a 256-d vector representation of
each input image. Subsequently, according to the regularization
approach we formulate the desired targets, and we attach the
Euclidean loss layer.

The Euclidean loss is initially significantly larger than the
softmax one. Thus, in order to control the relative importance of
the contributed losses, we first set the Euclidean loss parameter
n in ({0) to 0.0001, and we fixed it to 0.01 at the 20 epochs up to
the final epoch, for all the convolutional layers. All the models
are trained for 100 epochs.

5.3 Experimental Results

In order to validate the performance of the proposed regulariz-
ers, we use the 5-fold cross-validation, and we report the mean
Test Accuracy of the five cases and the standard deviation. We
note that the five folds are non-overlapped and fixed for all the
compared methods. In Table [I] we present the performance of
the proposed regularizers against the softmax-only approach, in
terms of classification accuracy. We also compare the regular-
izers with the standard L1 and L2 regularization schemes. From
the demonstrated results, we can see that both the MEB and DA
regularizers improve the classification performance, while they
are also superior over the L1 and L2 regularizers which slightly
improve the results.

Subsequently, we use the t-distributed stochastic neighbor
embedding (t-SNE) [53] algorithm, a non-parametric technique
for dimensionality reduction, widely used for data visualization,
to visualize the 128-d feature representations generated by the
CONVS5 layer of the proposed MEB and DA models, as well as
of the baseline Softmax model, for 100 crowded and 100 non-
crowded images. Thus, in [5a] 5b] and [5d of Fig. [5] we illustrate
the 2-d t-SNE embedding of the CONVS representations at 1
epoch, the t-SNE embedding of the representations at 10 epochs,
and at 20 epochs of Softmax training, respectively. In
and |of] of Fig. [5| we illustrate the corresponding representations
of the MEB training, and in and [51 of the same figure
we provide the corresponding DA representations. As we can
observe, while the main Softmax Loss aims at separating the
samples of different classes, the DA regularizer seeks to bring
the training samples’ representations of the same class together,
and the MEB regularizer aims to shrink the radius of the MEB
of the training samples’ representations. Both the regularizers
induce the training samples’ representations to shrink, while
the DA regularizer also preserves discriminant power. That is,
if we push them to their extreme, the training samples would



Training Approach
Hinge Loss
Hinge Loss & MEB
Hinge Loss & DA

Test Accuracy
0.9488 + 0.0009
0.9541 + 0.0022
0.9584 + 0.003

TABLE 2: Crowd Dataset - Hinge Loss: Test Accuracy

collapse to one point for the MEB regularizer, and two points
for the DA regularizer (possibly even to one too).

In Fig. [6] and Fig. []] we compare the proposed regularization
techniques, applied on all the convolutional layers, against the
one-loss training of the proposed CNN architecture. From the
demonstrated results, several remarks can be drawn. First, we
can notice that each of the proposed approaches accomplishes
improved results in terms of accuracy as compared to the one-
loss model. Second, we observe that the regularizers cause weak
improvement up to 20 epochs, which is reasonable since the
weight parameter 7 in (I0) for the DA regularizer and similarly
for the MEB one, is intentionally lower to the first epochs, as
stated previously. In Fig. [9] for the DA regularizer, as well as
in Fig. [I0] for the MEB regularizer, it is shown that the number
of the regularizers attached to the deep neural layers affects
the classification accuracy. That is, the more layers we attach
the regularizer the better improvement we accomplish, as it is
clearly illustrated in the Figures. This also comes with impact
on the computational cost. Finally, in Fig. [§] we apply both the
DA and MEB regularizers, and we see the improvement against
the one-loss model.

Furthermore, as we have previously mentioned, the Hinge
Loss layer could also utilized for the classification task, instead
of the Softmax Loss layer. To this aim, we also perform exper-
iments on the Crowd-Drone dataset utilizing the Hinge Loss
instead of the Softmax one, and we apply the proposed MEB
regularizer, as well as the DA regularizer. As we can observe
in Table [2] we can indeed achieve improved results with the
proposed regularizers using the Hinge Loss as the classification
objective.

Subsequently, in order to validate our claim that the pro-
posed regularization scheme can be applied for generic classifi-
cation purposes, we also conducted additional experiments on
two additional datasets. We utilized two datasets, constructed
for Bicycle (i.e. bicycle with bicyclist) and Football Player Detec-
tion, in the context of media coverage of certain sport events (e.g.
football match, bicycle race) by multiple drones with increased
decisional autonomy. The first dataset, namely Bicycle Dataset,
consists of 59,904 train images of bicycles and non-bicycles,
and correspondingly of 7,000 test images. The input images are
of size 64 X 64, and thus we modified the proposed architecture
for the crowd detection by removing the pooling layer which
follows the 57 convolutional layer. The second dataset, namely
Football Dataset, consists of 51,200 images of football players
and non football players. The input images are of size 32 X 32,
and hence, except for the aforementioned pooling layer, we have
also removed the first pooling layer in the proposed Crowd
architecture. In Table [3] we provide the evaluation results in
terms of classification accuracy, for the Bicycles Dataset. We
repeated the experiments five times, and we report the mean
value and the standard deviation. The batch size is set to 256.
As we can see the proposed regularizers significantly improve
the performance of the softmax-only model. We also compare
the proposed regularizers with the L1 and L2 regularization
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schemes. As we can observe the L1 regularization impairs
the classification performance, while the L2 one marginally
improves the performance.

Training Approach
Softmax
Softmax & L1
Softmax & 1.2
Softmax & MEB
Softmax & DA

Test Accuracy
0.9119 + 0.004
0.8991 + 0.0079
0.9134 + 0.0021
0.9448 + 0.0057
0.9423 + 0.0045

TABLE 3: Bicycle Dataset: Test Accuracy

In Table [ we provide the evaluation results in terms of
classification accuracy, for the Football Dataset. We repeated
the experiments five times, and we report the mean value and
the standard deviation. The batch size is set to 256. We compare
the proposed regularizers with the softmax-only approach as
well as the L1 and L2 regularizers. As we can see the proposed
regularizers are notably superior over both the softmax-only and
the L1/L2 regularization approaches.

Training Approach
Softmax
Softmax & L1
Softmax & 1.2
Softmax & MEB
Softmax & DA

Test Accuracy
0.8850 + 0.0051
0.8834 + 0.005
0.8856 + 0.0083
0.9112 + 0.01
0.9128 + 0.003

TABLE 4: Football Dataset: Test Accuracy

Thereafter, for ranking the proposed regularization meth-
ods and evaluating the statistical significance of the obtained
results, we performed a post-hoc Bonferroni test [56]. The
performance of pairwise methods is significantly different, if the
corresponding mean ranks over the datasets differ by at least the
critical difference which is defined as:

m(m + 1)
CD = qa 6—D’
where m corresponds to the number of the compared methods,
D to the number of datasets, and critical values g, can be found
in [06]. In the performed comparisons we set @ = 0.05. In the
experiment we considered the five folds of the Crowd Dataset
as five discrete datasets, since the folds are non-overlapped and
fixed for all the compared methods. Thus, the number of datasets
is seven in the performed test, including the Bicycle and Football
datasets. The compared methods are five, that is the proposed
regularizers, as well as the L1 and L2 regularizers are compared
with a control method which is the softmax-only approach. The
ranking results are also illustrated in Fig.[[l} On the vertical axis
the five compared methods are depicted, while on the horizontal
axis is depicted the performance ranking. The circles denote
the mean rank, while the intervals around them denote the
confidence interval, as it is defined by the CD value. Non-
overlapping intervals between two compared methods indicate
that the methods are significantly different, while overlapping
intervals imply that there is not a statistically significant differ-
ence between the corresponding ranks. As we can observe, both
the proposed regularizers are significantly different against the
softmax-only training, while between L1/L2 regularization and
the softmax-only approach there is not significant difference.

Qualitative results: In Fig. @]we provide the heatmaps for

the class Crowd of the proposed DA-regularized classification

22)
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model, trained on the entire dataset of 11,840 images, since
the test frames are not included in the dataset. That is, unseen
images of size 1024 X 1024 are fed to the network, and for every
window 128 x 128 with stride 8, we compute the output of the
network at the layer CONVG6, for the label Crowd, which is
the desired heatmap. We should note that proposed method can
obtain pixel-level heatmaps, albeit it uses data labelled at image
level in the training procedure. That is, it produces a heatmap
as output, similarly to more complex methods [57] although it
is not trained in pixel level segmented images. More heatmaps
of crowded and totally non-crowded scenes are provided as
supplementary material.

5.3.1

We tested the proposed crowd detector on a GeForce GTX 1080
GPU for various input sizes, and we compare it in terms of
frames per second (fps) with a common baseline model (i.e.
VGG-16 [40]) for the latter’s fixed input. Since the deployment
of the crowd detector will be done on a drone, we also tested the
performance on a low-power NVIDIA Jetson TX2 module with
8GB of memory, which is a state of the art GPU used for on-
board drone perception. The experimental results are presented
in Table 5] As we can see, the proposed model operates at 49.7
fps for input of size 224 X 224, against the baseline model which
runs at 9.36 fps for the same fixed input on the Jetson TX2
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module, whereas it runs at 13.1 fps for input of size 512 x 512,
and at 2.1 fps for input of size 1024 x 1024.

Generally, utilizing a CNN pretrained model as a weight ini-
tialization constitutes a common practice in deep learning,
in order to tackle the issue of limited data, or as a way to
boost the performance of a model. A common pretrained CNN
model like VGG, requires fixed input due to the fully connected
layers. However, this is prohibitive for the specific application,
since handling images with arbitrary dimension is required
in order to estimate a heatmap of the crowded areas. This
can be obtained using only convolutional layers. A way to
tackle the issue of the fully convolutional requirement of the
application, is to adapt the VGG pretrained model by removing
the fully connected layers. However, even if we discard the
fully connected layers of the model, the application imposes
a lightweight model, capable of being applied on-board. For
example, the modified fully convolutional VGG model runs at
28.16 fps for input 512 X 512 on the GTX 1080 (against 99.4 fps
of the proposed one), while for an input of size 1024 x 1024 it
is out of memory even in the GTX 1080 (the proposed model
runs at 23.45 fps, respectively). We should finally highlight that
even if it is feasible to apply such an architecture for the task
of crowd detection, this choice remains prohibitive, since the
crowd detector is one of a series of models that should be
deployed and run simultaneously on-board (e.g. bicycle/bicyclist
detection, football player detection, pose estimation, etc.) in the
context of media coverage of certain sport events by drones.

Model Input Jetson TX2 | GeForce GTX 1080

VGG 224 x 224 9.36 89.52
Proposed 224 x 224 49.7 416.66
Proposed 512 x 512 13.1 99.4
Proposed | 1024 x 1024 2.1 23.45

TABLE 5: Speed (FPS)

5.3.2 Training with limited data

Finally, we investigate the scenario of training with limited
data. That is, we conducted an additional experiment in order
to evaluate the performance of the proposed regularizers under
the extreme case where the available training samples are very
limited, and hence the utilization of a pretrained CNN model is



Fig. 12: Initial images on the left and the corresponding detected
crowd heatmaps on the right for five test images
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mandatory. More specifically, we have considered as training set
only 2,048 out of the 11,840 images of the Crowd dataset (using
1,024 images of crowd and 1,024 images of non-crowd), and as
test set 7,000 images. We used the fully convolutional portion
of the VGG-16 model, and we added a convolutional layer with
kernels covering the entire input. The output of the additional
convolutional layer was fed to a Softmax layer, producing a
distribution over the 2 classes of Crowd and Non-Crowd. We
trained an one-loss model using as weight initialization the
modified fully convolutional VGG model. Subsequently, we also
attached the two proposed regularizers. We note, that both in
the case of the softmax-only training as well as in the two-loss
regularized training, we only trained the two last convolutional
layers. The experimental results are provided in Table @ As we
can observe, the VGG initialization indeed helps the model,
trained with only 2,048 images, to perform well. Additionally,
from the demonstrated results it is deduced that the proposed
regularizers accomplish improved results as compared to the
softmax-only approach, even in the case of the extremely lim-
ited data, where we utilize a common CNN pretrained model
as weight initialization. That is, the proposed regularization
scheme is applicable for generic classification purposes, and for
different architectures, while it also enhances the generalization
ability of the model, regardless of the size of the training dataset.

Training Approach
VGG - Softmax
VGG - Softmax & MEB
VGG - Softmax & DA

Test Accuracy
0.9044 + 0.003
0.9136 + 0.0039
0.9138 + 0.0035

TABLE 6: Crowd Dataset - Modified-VGG initialization, Lim-
ited Training Samples

6 ConcLusions

In this paper, a novel human crowd detection method, for drone
flight safety purposes, using fully convolutional deep CNNs
was proposed. Firstly, a fully convolutional architecture was
proposed, in order to satisfy the computational and the memory
limitations of our application, and also benefit from the fully
convolutional networks properties. Secondly, a novel regular-
ization technique, that borrows ideas from the GE framework,
and is applicable to various deep learning models, for generic
classification problems, was proposed. Thirdly, a new Crowd-
Drone dataset was constructed, for the specific task, since there
is no publicly available dataset with drone-captured crowded
images. The experimental validation on the created dataset
proved the effectiveness of both the crowd detector, and the
regularizers. Finally, in order to better evaluate the performance
of the proposed regularizers, as well as to validate our claim
that the proposed regularization scheme is applicable in generic
classification problems, additional experiments were also con-
ducted on two new datasets, where the enhanced performance
of the regularizers was also validated.
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APPENDIX

In

this appendix we provide the analysis of equality [[9] For

simplicity in notation we denote y* as y.
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For simplicity, é can be omitted, since it does not affect the
lution of the minimization problem.

Z)’k) =

1 1
Vi——= > y)yi-—
y,«ZEZ:B |B| y,Z:eg |B| v

ZY_,T Z i)

yj€B yeB

=DINAY

yi€ByjeB

REFERENCES

1

[2]

(3]

(4]

(51

(6]

(8]

B. B. Le Cun, J. S. Denker, D. Henderson, R. E. Howard, W. Hub-
bard, and L. D. Jackel, “Handwritten digit recognition with a back-
propagation network,” in Advances in neural information processing
systems 2. Morgan Kaufmann Publishers Inc., 1990, pp. 396-404.

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based
learning applied to document recognition,” Proceedings of the IEEE,
vol. 86, no. 11, pp. 2278-2324, 1998.

A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Advances in neural
information processing systems, 2012, pp. 1097-1105.

C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,
V. Vanhoucke, and A. Rabinovich, “Going deeper with convolutions,”
in Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, 2015, pp. 1-9.

S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn: Towards real-time
object detection with region proposal networks,” in Advances in neural
information processing systems, 2015, pp. 91-99.

W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, and A. C.
Berg, “Ssd: Single shot multibox detector,” in European conference on
computer vision. Springer, 2016, pp. 21-37.

J. Redmon and A. Farhadi, “Yolo9000: better, faster, stronger,” arXiv
preprint arXiv:1612.08242, 2016.

Y. Taigman, M. Yang, M. Ranzato, and L. Wolf, “Deepface: Closing the
gap to human-level performance in face verification,” in Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition.
IEEE, 2014, pp. 1701-1708.

0]

[10]

(1]

[12]

(13]

(14]

(15]

[16]

[17]

(18]

(19]

(20]

(21]

[22]

(23]

(24]

(25]

(26]

(27]

(28]

[29]

(30]

[31]

12

M. Tzelepi and A. Tefas, “Deep convolutional learning for content based
image retrieval,” Neurocomputing, vol. 2735, pp. 2467-2478, 2018.

D. Ciresan, U. Meier, and J. Schmidhuber, “Multi-column deep neural
networks for image classification,” in Computer Vision and Pattern
Recognition (CVPR), 2012 IEEE Conference on. 1EEE, 2012, pp.
3642-3649.

Y. LeCun, L. Jackel, L. Bottou, C. Cortes, J. S. Denker, H. Drucker,
I. Guyon, U. Muller, E. Sackinger, P. Simard et al., “Learning algo-
rithms for classification: A comparison on handwritten digit recogni-
tion,” Neural networks: the statistical mechanics perspective, vol. 261,
p. 276, 1995.

A. Toshev and C. Szegedy, “Deeppose: Human pose estimation via
deep neural networks,” in Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 2014, pp. 1653-1660.

P. Sermanet, K. Kavukcuoglu, S. Chintala, and Y. LeCun, “Pedestrian
detection with unsupervised multi-stage feature learning,” in Computer
Vision and Pattern Recognition (CVPR), 2013 IEEE Conference on.
IEEE, 2013, pp. 3626-3633.

B. Zhou, A. Lapedriza, J. Xiao, A. Torralba, and A. Oliva, “Learning
deep features for scene recognition using places database,” in Advances
in neural information processing systems, 2014, pp. 487-495.

S. Yan, D. Xu, B. Zhang, H.-J. Zhang, Q. Yang, and S. Lin, “Graph
embedding and extensions: A general framework for dimensionality
reduction,” IEEE transactions on pattern analysis and machine intelli-
gence, vol. 29, no. 1, pp. 40-51, 2007.

A. Tosifidis, A. Tefas, and I. Pitas, “Graph embedded extreme learning
machine,” IEEE transactions on cybernetics, vol. 46, no. 1, pp. 311-324,
2016.

D. Bouzas, N. Arvanitopoulos, and A. Tefas, “Graph embedded non-
parametric mutual information for supervised dimensionality reduc-
tion,” IEEE transactions on neural networks and learning systems,
vol. 26, no. 5, pp. 951-963, 2015.

R. Caruana, “Multitask learning,” Machine learning, vol. 28, no. 1, pp.
41-75, 1997.

J. Weston, F. Ratle, and R. Collobert, “Deep learning via semi-
supervised embedding,” in Proceedings of the 25th international con-
ference on Machine learning. ACM, 2008, pp. 1168-1175.

C. Wu, P. Karanasou, M. J. Gales, and K. C. Sim, “Stimulated
deep neural network for speech recognition,” University of Cambridge
Cambridge, Tech. Rep., 2016.

C. Wu, M. J. Gales, A. Ragni, P. Karanasou, and K. C. Sim, “Improv-
ing interpretability and regularization in deep learning,” IEEE/ACM
Transactions on Audio, Speech, and Language Processing, vol. 26,
no. 2, pp. 256-265, 2018.

M. Tzelepi and A. Tefas, “Human crowd detection for drone flight
safety using convolutional neural networks,” in European Signal Pro-
cessing Conference (EUSIPCO), Kos, Greece, 2017.

S. A. M. Saleh, S. A. Suandi, and H. Ibrahim, “Recent survey on crowd
density estimation and counting for visual surveillance,” Engineering
Applications of Artificial Intelligence, vol. 41, pp. 103-114, 2015.

H. Fradi and J.-L. Dugelay, “Spatial and temporal variations of feature
tracks for crowd behavior analysis,” Journal on Multimodal User
Interfaces, vol. 10, no. 4, pp. 307-317, 2016.

P. Reisman, O. Mano, S. Avidan, and A. Shashua, “Crowd detection
in video sequences,” in Intelligent Vehicles Symposium, 2004 IEEE.
IEEE, 2004, pp. 66-71.

0. Arandjelovic, “Crowd detection from still images,” in BMVC 2008:
Proceedings of the British machine vision association conference
2008. BMVA Press, 2008, pp. 1-10.

O. Meynberg, S. Cui, and P. Reinartz, “Detection of high-density
crowds in aerial images using texture classification,” Remote Sensing,
vol. 8, no. 6, p. 470, 2016.

L. Boominathan, S. S. Kruthiventi, and R. V. Babu, “Crowdnet: a deep
convolutional network for dense crowd counting,” in Proceedings of
the 2016 ACM on Multimedia Conference. ACM, 2016, pp. 640-644.
C. Zhang, H. Li, X. Wang, and X. Yang, “Cross-scene crowd counting
via deep convolutional neural networks,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 2015, pp.
833-841.

Y. Zhang, D. Zhou, S. Chen, S. Gao, and Y. Ma, “Single-image
crowd counting via multi-column convolutional neural network,” in
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2016, pp. 589-597.

J. Shao, K. Kang, C. Change Loy, and X. Wang, “Deeply learned
attributes for crowded scene understanding,” in Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, 2015,
pp. 4657-4666.



[32] M. Ravanbakhsh, M. Nabi, H. Mousavi, E. Sangineto, and N. Sebe,
“Plug-and-play cnn for crowd motion analysis: An application in
abnormal event detection,” arXiv preprint arXiv:1610.00307, 2016.

[33] D. Babu Sam, S. Surya, and R. Venkatesh Babu, “Switching convo-
lutional neural network for crowd counting,” in Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, 2017,
pp. 5744-5752.

[34] H. Idrees, I. Saleemi, C. Seibert, and M. Shah, “Multi-source multi-
scale counting in extremely dense crowd images,” in Computer Vision
and Pattern Recognition (CVPR), 2013 IEEE Conference on. IEEE,
2013, pp. 2547-2554.

[35] H. Idrees, K. Soomro, and M. Shah, “Detecting humans in dense
crowds using locally-consistent scale prior and global occlusion rea-
soning,” IEEE transactions on pattern analysis and machine intelli-
gence, vol. 37, no. 10, pp. 1986-1998, 2015.

[36] A. Dehghan and M. Shah, “Binary quadratic programing for online
tracking of hundreds of people in extremely crowded scenes,” IEEE
transactions on pattern analysis and machine intelligence, vol. 40,
no. 3, pp. 568-581, 2018.

[37] W. Sultani, C. Chen, and M. Shah, “Real-world anomaly detection in
surveillance videos,” arXiv preprint arXiv:1801.04264, 2018.

[38] T. Castelli, A. Sharghi, D. Harper, A. Tremeau, and M. Shah, “Au-
tonomous navigation for low-altitude uavs in urban areas,” arXiv
preprint arXiv:1602.08141, 2016.

[39] G. Tolias, R. Sicre, and H. Jégou, “Particular object retrieval with
integral max-pooling of cnn activations,” CoRR, vol. abs/1511.05879,
2015.

[40] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.

[41] 1. T. Jolliffe, “Principal component analysis and factor analysis,” in
Principal component analysis. Springer, 1986, pp. 115-128.

[42] R. A. Fisher, “The use of multiple measurements in taxonomic prob-
lems,” Annals of eugenics, vol. 7, no. 2, pp. 179-188, 1936.

[43] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer
vision and pattern recognition, 2016, pp. 770-778.

[44] H. Do, A. Kalousis, and M. Hilario, “Feature weighting using margin
and radius based error bound optimization in svms,” Machine Learning
and Knowledge Discovery in Databases, pp. 315-329, 2009.

[45] H. Do, A. Kalousis, A. Woznica, and M. Hilario, “Margin and radius
based multiple kernel learning,” Machine Learning and Knowledge
Discovery in Databases, pp. 330-343, 2009.

[46] H. Do and A. Kalousis, “Convex formulations of radius-margin based
support vector machines,” in International Conference on Machine
Learning, 2013, pp. 169-177.

[47] V. N. Vapnik and V. Vapnik, Statistical learning theory. Wiley New
York, 1998, vol. 1.

[48] L. Lin, K. Wang, W. Zuo, M. Wang, J. Luo, and L. Zhang, “A deep
structured model with radius-margin bound for 3d human activity
recognition,” arXiv preprint arXiv:1512.01642, 2015.

[49] D. M. Tax and R. P. Duin, “Support vector data description,” Machine
learning, vol. 54, no. 1, pp. 45-66, 2004.

[50] S. T. Roweis and L. K. Saul, “Nonlinear dimensionality reduction by
locally linear embedding,” science, vol. 290, no. 5500, pp. 2323-2326,
2000.

[51] X.-w. Chen and T. Huang, “Facial expression recognition: a clustering-
based approach,” Pattern Recognition Letters, vol. 24, no. 9-10, pp.
1295-1302, 2003.

[52] K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep into rectifiers:
Surpassing human-level performance on imagenet classification,” in
Proceedings of the IEEE international conference on computer vision,
2015, pp. 1026-1034.

[53] G. E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, and
R. R. Salakhutdinov, “Improving neural networks by preventing co-
adaptation of feature detectors,” arXiv preprint arXiv:1207.0580, 2012.

[54] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick,
S. Guadarrama, and T. Darrell, “Caffe: Convolutional architecture for
fast feature embedding,” in Proceedings of the 22nd ACM international
conference on Multimedia. ACM, 2014, pp. 675-678.

[55] L.v.d.Maaten and G. Hinton, “Visualizing data using t-sne,” Journal
of Machine Learning Research, vol. 9, no. Nov, pp. 2579-2605, 2008.

[56] O. J. Dunn, “Multiple comparisons among means,” Journal of the
American Statistical Association, vol. 56, no. 293, pp. 52-64, 1961.

[57] J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks
for semantic segmentation,” in Proceedings of the IEEE conference on
computer vision and pattern recognition, 2015, pp. 3431-3440.



	Introduction
	Related Work
	Proposed Method
	Fully Convolutional Neural Network
	Graph Embedding and Dimensionality Reduction
	Graph Embedded CNN
	Discriminant Analysis Regularization
	Minimum Enclosing Ball Regularization
	Graph Embedded Regularization Framework


	Crowd-Drone Dataset Construction
	Experiments
	CNN Model
	Implementation Details
	Experimental Results
	Discussion on Speed
	Training with limited data


	Conclusions
	Appendix
	References
	Biographies
	Maria Tzelepi
	Anastasios Tefas


