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Abstract

Deep Reinforcement Learning (DRL) is among the state-of-the-art approaches for training agents for decision-
making problems, such as financial trading. However, training DRL agents for such tasks is not always straight-
forward, since the noisy and non-stationary nature of financial data aggravate the already unstable training of DRL
models. As a result, using DRL methods for such tasks require devoting significant effort for hyper-parameter tuning,
as well as for designing the appropriate input pre-processing schemes. The latter is especially important, given the
non-stationary nature of financial data, along with the ability of DRL agents to easily overfit the data, limiting their
generalization abilities. In this work, we propose overcoming these limitations by introducing a differentiable, param-
eterized normalization scheme that allows for learning how the data should be normalized, along with the DRL model.
More specifically, we propose dynamically normalizing the input according to various time-series statistics, which al-
lows for adapting the model on-the-fly to the current mode of the data. At the same time, employing a segmentation
scheme for extracting the statistics of the data allows for better capturing the variations of the input time-series and
leading to more stationary representations. The proposed method is formulated as a series of neural layers that can be
efficiently implemented using virtually any DL framework. The effectiveness of the proposed method against various
normalization approaches is validated using two FOREX datasets and a state-of-the-art policy-based DRL approach.

1. Introduction

Different assets are constantly being traded in financial
markets, giving investors the opportunity to take prof-
itable decisions. Therefore, capturing and predicting an
asset’s movement is essential for investors. Powerful tools
have been developed to help them construct their trad-
ing policy and obtain higher profits, while lowering the
risk of the investments. In the past years, quantitative
analysis was among the most prevailing methods used
by investors, with the majority of research focusing on
it. Quantitative analysis uses mathematical and statis-
tical models providing predictions about possible future
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events of interest (Vidyamurthy, 2004). At the same time,
the advent of automated trading provided important op-
portunities (Sarlin, 2013; Li and Jung, 2021), e.g., high-
frequency trading (Gomber and Haferkorn, 2015; Passalis
et al., 2020), allowing for further expanding the oppor-
tunities for using such models. However, the enormous
amount of data that are available, along with strict time-
restriction to take an action eventually led to the develop-
ment of more sophisticated methods. Quantitative anal-
ysis was no longer a sufficient tool because of its limi-
tations, since its reliance on handcrafted features and the
need for human intervention limited its usefulness.

Indeed, Deep Learning (DL) has nowadays dis-
placed such traditional tools to a large extent (Abe and
Nakayama, 2018; Zhang et al., 2019b), also following
recent advances in time-series analysis (de Mattos Neto
et al., 2017; Zhang et al., 2019a). Several methods were
proposed, ranging from classification models providing
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an asset’s future movement to regression models trying
to predict an asset’s price in the near future (Zhang et al.,
2019b; Tsantekidis et al., 2017, 2020). Yet, these methods
still required hand-crafted policies in order to translate the
output of a model into a trading policy that could be used
in a real market environment. The integration of Rein-
forcement Learning (RL) in DL allowed for overcoming
some of the aforementioned limitations. As a result, Deep
Reinforcement Learning (DRL) has recently became the
approach of choice for efficiently training agents for trad-
ing (Deng et al., 2016; Zarkias et al., 2019). DRL is ca-
pable for providing a profitable policy that can be directly
used in financial markets, while promptly handling enor-
mous amounts of data (given the appropriate computing
resources).

Despite DRL’s success in various fields, training DRL
agents is often especially unstable, rendering the train-
ing process challenging. Indeed, many methods have
been proposed to ensure the agent’s convergence and en-
hance its performance ranging from employing several
heuristics to increase the stability of the training pro-
cess in inherently unstable estimators, such as Q-learning-
based networks (Hessel et al., 2018), to reward shap-
ing approaches (Tambwekar et al., 2019; Zarkias et al.,
2019). It is worth noting that the noisy nature of finan-
cial data are further exacerbating these phenomena. As a
result, developing DRL agents for trading often requires
the exhaustive testing of many different pre-processing
pipelines, such as normalization schemes and/or detrend-
ing methods, along with the rigorous tuning of the hyper-
parameters of the model.

To tackle the aforementioned problems, we propose in-
corporating a trainable normalization layer to DRL mod-
els to allow for learning how to properly shift and scale
an asset’s raw prices as we train the model. This layer
aims to pre-calibrate the current input time-series in or-
der to better match the distribution that the DRL model
expects, minimizing in this way the effect of distribution
shift phenomena and allowing for increasing the gener-
alization capabilities of the resulting DRL agents. It is
worth noting that the proposed method does not just learn
some static normalization parameters. Instead, it learns
to infer the normalization parameters that should be ap-
plied according to the statistics of current input window.
To this end, the proposed method employs a group-based
approach for extracting useful statistics from the input,

Figure 1: An example of a window of 120 close prices of EUR/GBP cur-
rency pair. Note that the data can drift away from their mean, requiring
an appropriately designed method to handle the sub-groups that often
exist within the same input window.

while also allowing for applying a different normaliza-
tion scheme at different parts of the input time-series. To
better understand why such approach can lead to more
stationary representations of the input time-series we can
consider the example shown in Fig. 1, where a window
of 120 close prices of the EUR/GBP currency pair is de-
picted. Note that the time-series can often drift away from
its mean, even for such short windows. Therefore, us-
ing an appropriately designed method to handle the sub-
groups that often exist within the same input window can
allow for extracting a more stationary time-series repre-
sentation, which in turn can improve the performance of
the subsequent DL model.

Even through, adaptive normalization methods have
been used in the context of classification problems (Pas-
salis et al., 2019), this is the first time, to the best of
our knowledge, that a deep adaptive input normalization
approach is adapted for use with DRL models and ef-
fectively used for developing trading DRL agents. In-
deed, as we demonstrated in Section 2, applying such
method on raw price time-series is not trivial, requiring
several structural changes, such as employing segmenta-
tion schemes for extracting the input statistics and nor-
malization the input values. The effectiveness of the pro-
posed method is demonstrated using two FOREX cur-
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rency pairs and a policy-based DRL algorithm. The pro-
posed method is compared to several other baseline nor-
malization methods, as well as to other trainable normal-
ization approaches, e.g., (Ioffe and Szegedy, 2015; Ba
et al., 2016). The proposed method not only allows for
obtaining the most profitable policy, but also seems to ex-
hibit greater robustness (compared to the rest of the evalu-
ated methods) in a wide range of different model’s hyper-
parameters.

The rest of the paper is as follows. In Section 2 we an-
alytically derive the proposed method. Then, in Section 3
we describe the experimental setup, provide the experi-
mental evaluation and discuss the obtained results. Fi-
nally, Section 4 concludes the paper and provides future
research directions.

2. Proposed Method

The proposed method is presented in this Section. First,
the necessary background information and notation re-
garding the task of financial trading are introduced. Then,
the proposed method is presented in detail and discussed.

2.1. Background

Let xt = [pt−N−1, . . . , pt−1, pt] ∈ RN be a vector that
holds the last N close prices pi of an asset at time t. An
agent has to take a decision for the next time step t + 1
based on the input xt. The agent’s available actions are:
a) “long position”, when an asset is purchased, b) “short
position”, when a borrowed asset is sold and c) “exit”
when the agent exits the market. To train a DRL agent
a proper simulation of financial markets was developed.
The agent’s goal is to maximize its Profit and Loss (PnL)
by taking and holding the supported positions. The PnL-
based reward rt at each time step t is calculated as:

rt =
mt − pt

lt
· at − ct (1)

where pt is the current price of an asset at time t, mt is
the average of the next 10 prices, lt is the last transacted
price, i.e., the price that the agent opened its position, at

is the performed action and ct is the applied commission.
We used the mean value of the next 10 prices mt, instead
of the actual next close price pt+1, since this smoothing
allows for more easily training DRL agents (Tsantekidis

et al., 2020). During evaluation (backtesting) we used the
next price pt+1 to calculate the PnL that corresponds to an
agent that performs trading in a real market.

Note that the action at takes one of the three values -1,
0, 1 corresponding to short, exit and long. When the agent
exits the market, the simulation continues with the agent
having the option to reenter in it. The obtained reward rt

can be scaled by a constant factor. Finally, the value of
the commission ct, that is paid at time t, is affected by the
alteration of positions and is defined as:

ct = |at − at−1| · c (2)

with c being the commission fee. Note that the agent pays
the double of the commission fee when it alters its posi-
tion from long to short or vice versa, it pays c when one
of the actions correspond to exit and it pays no commis-
sion when it held the same position as in the previous time
step.

2.2. Group-based Input Normalization
The proposed layer comprises two sub-layers: a) an

adaptive shifting layer and b) an adaptive scaling layer.
The input vector xt ∈ RN is first reshaped into a matrix
x(g)

t ∈ Rg×n, where g is the number of groups and n is their
length. If g · n , N, then zero padding can be applied.
Note that the sequence of prices is retained both within
and out of the groups. The parameters of the normaliza-
tion scheme that was applied to every group are calcu-
lated based on the statistics of each group. To this end,
we first extract a summary representation, the average of
every group, to estimate the distribution that produced the
groups’ values :

µt =
1
n

x(g)
t 1n ∈ Rg, (3)

where 1n ∈ Rn is a unit vector, i.e., a vector with n number
of ones. The groups’ shifting factors are calculated as:

µ(x(g)
t ) =W1µt ∈ Rg, (4)

with W1 ∈ Rg×g being a parameter matrix holding the
weights of the adaptive shifting layer. During the training,
the agent learns how to exploit the distributions and ex-
tract information from every group to properly shift them.
The output of the first layer is defined as:

x̃(g)
t = x(g)

t − µ(x(g)
t ) ∈ Rg×n, (5)
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Figure 2: Overview of the proposed method. The input time-series is segmented into a number of groups g. The values that belong to each group
are normalized together using the adaptive shifting and scaling layers. After normalizing the time-series using the proposed method, the output is
fed into the employed DRL model. The whole architecture is trained in an end-to-end fashion to perform financial trading.

with µ(x(g)
t ) being properly broadcasted to calculate the

element-wise subtraction. Note that we did not redefine
µ(x(g)

t ) to avoid cluttering the notation.
The adaptive scaling layer works similarly to the first

sub-layer with its goal being the proper scaling of the
groups. First, we extract the standard deviation from ev-
ery group:

σt =

√
1
n

x̃(g)
t ⊙ x̃(g)

t 1n ∈ Rg, (6)

where the notation ⊙ is referring to the Hadamard prod-
uct, i.e, the element-wise multiplication of two matrices.
Then, the scaling factors are calculated as:

σ(x(g)
t ) =W2σt ∈ Rg, (7)

with W2 ∈ Rg×g being a parameter matrix that holds the
second layer’s weights. Similarly, the extracted informa-
tion from every group is used to individually calculate the
scaling factor of every group. The second sub-layer’s out-
put is defined as:

˜̃x(g)
t = x̃(g)

t /(σ(x(g)
t ) + ϵ) ∈ Rg×n, (8)

Again, σ(x(g)
t ) is appropriately broadcasted without defin-

ing a new notation.

Therefore, the proposed method works by first split-
ting the input into groups and calculating some statis-
tics regarding these groups, as described in Eq. (3) and
(6). Then, these statistics are used to estimate the val-
ues to shift/scale the input, as described in Eq. (4) and
Eq. (7), as well as in (5) and (8). These calculations in-
volve a linear combination of the input statistics using the
weights W1 and W2, which indicate how the statistics of
each group contribute into the normalization of each other
group. Note that these weights are adjusted during the
training process and kept static during inference. How-
ever, in contrast to other normalization approaches that
directly use the statistics of the input/each group without
any kind of transformation, the proposed method can be
considered adaptive since it can learn how to correlate the
statistics of multiple input groups in order to normalize
each of the groups dynamically during inference.

Finally, ˜̃x(g)
t is flattened and fed to the rest of the net-

work. The agent’s output is calculated as:

at = fW( ˜̃x(g)
t ) ∈ R3, (9)

where at holds the estimation probability for each sup-
ported action (long, short and exit) produced by the agent
fW(·) and W are the parameters that adjust the policy.

The DRL agent is trained with the algorithm Proximal
Policy Optimization (PPO) (Schulman et al., 2017). Both
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actor and critic used the proposed layer along with the
same followed architecture without sharing any weights.
The agent was trained using the advantage which is de-
fined as At = Rt −Vt, where Rt is referring to the accumu-
lative return and Vt to the critic’s estimation at timestep
t. We used eligibility traces to calculate Rt, as it provides
a controllable trade-off between bias and variance instead
of the more conventional and unbiased Monte-Carlo re-
turn (Parisi et al., 2019). After running each episode and
collecting the rewards needed for calculating the advan-
tage, the actor and the critic were updated. The actor was
updated as:

∆Wa = −η
∂La

∂Wa
, (10)

∆W1a = −η
∂La

∂W1a
, (11)

and
∆W2a = −η

∂La

∂W2a
, (12)

where η is the used learning rate, La is the PPO-derived
loss of the actor and the notation Wa, W1a and W2a is
used to refer to the parameters of the actor, along with
the parameters of the two employed sub-layers. Note that
since the employed layers are fully differentiable, the re-
sulting architecture can be trivially trained in an end-to-
end fashion using backpropagation. The critic’s model
is similarly trained. After training the actor, the action
that corresponds to the maximum probability according
to the learned policy is selected. Finally, if more than one
model is trained for the same task, an ensemble model
can be employed (Wiering and Van Hasselt, 2008) with
the probabilities over each action being averaged.

3. Experimental Evaluation

The experimental evaluation is provided in this Section.
First we briefly review the developed simulation environ-
ment, network architecture, and evaluation setup. Then,
the experimental results are provided and discussed.

3.1. Experimental Setup
To evaluate the proposed method, we used the Euro

- Pound Sterling (EUR/GBP) and the Australian Dollar
- New Zealand Dollar (AUD/NZD) currency pairs. We
sampled the minute close prices from 2017 to 2020 and

Figure 3: EUR-GBP data: Training data are denoted using blue color,
while testing data are denoted using orange color. Figure best viewed in
color.

2015 to 2020 respectively. We used more data for the
AUD/NZD to evaluate each method in different settings,
i.e., observe how much they can generalize the given data
when overfitting is more likely to occur. The data used for
training and testing data presented in Fig. 3 and 4 respec-
tively.

The actor and critic models follow the same architec-
ture composed of 3 fully connected layers with 16 neu-
rons each. Models did not share any weights. The ac-
tor’s output was consisted of three neurons correspond-
ing to the available actions, while the critic’s of one neu-
ron. The activation function PReLU was used for the hid-
den layers (He et al., 2015), while the softmax activation
was used for actor’s final layer (Sutton and Barto, 2018).
No activation function was used in the last layer of the
critic. The input to the model comprised 120 sequential
close prices. Following other DRL architectures for trad-
ing (Deng et al., 2016), late fusion was used for including
the feedback from the previous performed action, allow-
ing for introducing the information regarding the previous
action closer to the last layers of the network. This can
potentially increase the impact of this information to the
network, ensuring that the model will consider the pre-
vious position in the market, which in turn, affects the
commission that may be paid. The employed architec-
ture is depicted in Fig. 5. During the training process,
the agent’s step in the environment was set to 30 min-
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Figure 4: AUD-NZD data: Training data are denoted using blue color,
while testing data are denoted using orange color. Figure best viewed in
color.

utes. The learning rate was set to 10−4 and 3 · 10−4 for
the actor and the critic respectively. There was a total of
2 episodes and at the end of each one both models were
updated with batches of size 32. The memory with the
experiences that was split in batches was used 10 times
for the updates before being completely deleted. The or-
der of the batches retained the chronological sequence of
the data. We used the AdamW optimizer (Loshchilov and
Hutter, 2018) and the PPO algorithm (Schulman et al.,
2017) for updating the networks. Eligibility traces were
employed for calculating the accumulative return and the
hyperparameters λ, which controls the trade-off between
variance and bias, and γ (discount rate) were set to 0.8
and 0.9 (Precup, 2000). The commission c that was ap-
plied for changing positions was set to 2 · 10−6. Finally,
we ensured that the initialization of the weights was lead-
ing to a balanced action distribution before initiating the
training (Andrychowicz et al., 2020).

The proposed layer used 4 groups with each one hav-
ing length equal to 30 (g = 4, n = 30). We experimentally
noticed that by increasing the method’s complexity, i.e.,
increasing the number of groups, the agents’ performance
did not significantly improve. Moreover we observed that
the returned gradients had large magnitude, thus the layer
required a smaller learning rate. We set the first and sec-
ond sub-layer’s learning rate equal to 10−8 and 10−10 cor-
respondingly. The initialization of the weights of each of

Figure 5: Network architecture that was employed for the experiments
reported in this paper. Both the actor network and the critic network
receive as input the input time-series, along with the action that was
performed at the previous time step. The previous action is encoded
using one-hot encoding.

the sub-layers (W1 and W2) was the identity matrix.
We evaluated different DRL agents using five different

input normalization approaches:

1. Standardization, i.e., subtracting the mean value
from the input and dividing by the standard devia-
tion

2. Price Differences, i.e., every input’s price pi was re-
placed with pi − pi−1,

3. Percentage Changes, i.e., every price pi of the input
was replaced with pi−pi−1

pi−1
,

4. Layer Normalization (Ba et al., 2016), and
5. the proposed method.

Note that we standardize the percentage changes and dif-
ferences to be in a more appropriate scale and ensure that
every method’s input will be in a similar range. The orig-
inal purpose of Layer Normalization may differ, however
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it is an interesting comparison with the proposed method.
Both of them are trainable layers and have similar ef-
fect to the input with Layer Normalization bearing resem-
blance to the proposed layer when no grouping is applied
(g = 1, n = 120). Also, we experimented with batch
normalization (Ioffe and Szegedy, 2015) as a preprocess-
ing tool at the model’s input, but the agents’ training was
not successful. Therefore, we omitted reporting the cor-
responding results.

The conducted experiments with the evaluated methods
were employed in 3 different environment setups regard-
ing the way the agents are rewarded:

1. we used the actual next price pt+1 instead of the mean
value of the next 10 prices mt in the reward’s equa-
tion 1,

2. we used the reward as it was defined in equation 1,
and

3. the reward in equation 1 was scaled by a factor of
10,000

The first setup was the most unstable and challenging for
an agent to be trained while using the average of the next
10 prices mt smoothed the training process and benefited
all of the methods. Finally, the third setup increased the
loss’ magnitude and led to faster algorithm’s convergence.
Evaluating in different training simulations shows the ef-
fectiveness of each method along with its robustness to
hyper-parameter tuning.

Furthermore, apart from evaluating the individual PnL
of each agent, we also employed an ensembling strategy,
where we combined seven individual agents. This is a
strategy that is known to significantly improve the per-
formance of RL agents (Wiering and Van Hasselt, 2008),
while also allowing for drawing more safe conclusions,
since the variability that might exist due to differences in
the initialization of each separate agent is minimized.

3.2. Experimental Results

The experimental results are reported in Table 1 and
2 for the two different currency pairs, where the ensem-
ble’s PnL, along with the individual agent’s mean PnL
are reported. The proposed method leads to highest PnL
in all evaluated setups for the individual agents. Only a
few combinations of hyper-parameter values and normal-
ization methods lead to positive PnL, while the proposed

Figure 6: PnL curve for the proposed method (best setup) on EUR/GBP
currency pair (calculated on the test set). The PnL curves for the seven
individual agents are plotted, along with the PnL curve for the ensemble
model.

Figure 7: PnL curve for the proposed method (best setup) on AUD/NZD
currency pair (calculated on the test set). The PnL curves for the seven
individual agents are plotted, along with the PnL curve for the ensemble
model.

method always allows for learning an agent that can per-
form profitable trades. This demonstrates the ability of
the proposed method to reduce the effect of these hyper-
parameters on the training of DRL models.

Examining the ensembles’ efficiency, we observe that
most methods benefit from it by obtaining higher prof-
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Table 1: PnL of individual agents, as well as for the ensemble agent
for different methods and setups trained on the EUR/GBP currency pair.
PnL is calculated on the test set.

Normalization Indv. PnL Ensemble
PnL

Setup 1

Input Standardization −0.119 ± 0.232 0.127
Price Differences −0.507 ± 0.277 −0.513
Percentage Changes −0.518 ± 0.300 −0.458
Layer Normalization −0.486 ± 0.391 −0.523
Proposed 0.050 ± 0.199 0.527

Setup 2

Input Standardization −0.107 ± 0.157 0.261
Price Differences −0.516 ± 0.326 −0.413
Percentage Changes −0.527 ± 0.316 −0.379
Layer Normalization −0.455 ± 0.440 −0.077
Proposed 0.087 ± 0.250 0.550

Setup 3

Input Standardization 0.198 ± 0.187 0.679
Price Differences −0.227 ± 0.203 0.119
Percentage Changes −0.237 ± 0.203 0.112
Layer Normalization −0.286 ± 0.318 0.274
Proposed 0.206 ± 0.175 0.713

its than their individual agents. In Fig. 6 and 7, we also
provide the PnL plot for the proposed method, including
both the plots for the seven individual agents, as well as
the plot for the final ensemble model composed of the
individual agents. The actions of the ensemble agents
are selected after averaging the outputs of the individ-
ual agents and selecting the most probable action. The
proposed method provides the best overall performance
with its ensemble obtaining the highest profit among all
the individual agents and their ensembles. Comparing the
proposed method and input standardization, which is the
second best-performing method, we obtained on average
84% higher profit with the EUR/GBP pair from the indi-
vidual agents and 143% from their ensembles. Indeed, the
proposed method outperformed the input standardization
significantly with the first and second setup. Again, even

Table 2: PnL of individual agents, as well as for the ensemble agent for
different methods and setups trained on the AUD/NZD currency pair.
PnL is calculated on the test set.

Method Indv. PnL Ensemble PnL

Setup 1

Input Standardization −0.009 ± 0.283 0.543
Price Differences −0.537 ± 0.629 −0.745
Percentage Changes −0.780 ± 0.597 −0.592
Layer Normalization −0.366 ± 0.468 0.132
Proposed 0.394 ± 0.275 1.140

Setup 2

Input Standardization 0.246 ± 0.250 1.072
Price Differences −0.545 ± 0.472 −0.558
Percentage Changes −0.613 ± 0.432 −0.318
Layer Normalization −0.585 ± 0.756 −0.009
Proposed 0.600 ± 0.267 1.305

Setup 3

Input Standardization 0.518 ± 0.297 1.280
Price Differences −0.132 ± 0.407 0.505
Percentage Changes −0.103 ± 0.383 0.546
Layer Normalization 0.363 ± 0.501 1.015
Proposed 0.572 ± 0.207 1.267
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Table 3: Effect of reward scaling on PnL of ensemble model (EUR/GBP
currency pair).

Reward scaling factor 103 104 2 × 104

Input Standardization 0.480 0.679 0.684
Proposed 0.562 0.713 0.739

when ensemble is used, most methods are strongly de-
pendent on the environment’s settings, while the proposed
method shows the highest robustness to hyper-parameter
tuning and does not rely with the same degree on it, i.e., it
is the least affected by the three different setups, obtaining
a positive PnL for all of them.

Moreover, it is quite remarkable that individual agents
with poor performance, when combined, are able to pro-
vide a profitable policy. Exemplary cases are the agents
that used differences and percentage changes in the third
setup, where the average individual agent had significant
loss, while their ensembles managed to gain profit. Fur-
thermore, layer normalization, which is the method that
is most similar to the proposed one, was not very consis-
tent with its performance among the different setups and
its policy was not as profitable as the other methods.

Considering the three environment setups, we can con-
clude that the third setup offers the best agent’s gener-
alization with all ensembles having a profitable policy.
Apart from the proposed method, all other methods ob-
tained the highest profit with the third setup in both pairs.
When the pair AUD/NZD was used, the proposed method
led to the best PnL when combined with the second setup.
This is probably due to the higher amount of data with
which it was able to converge to profitable policy with-
out needing the extra scaling of the reward whose purpose
was the faster algorithm’s convergence. Additional exper-
iments were also conducted to further evaluate the impact
of reward scaling on the behavior of the agents. The ef-
fect of reward scaling into the PnL of the ensemble agents
is provided in Table 3 comparing the proposed method
to the second best performing method (Input Standariza-
tion). Using higher reward scaling leads to more prof-
itable agents, confirming the previous observations. Note
that the proposed method always leads to the highest PnL,
regardless of the employed scaling factor.

Table 4: Ablation study (comparing the effect of using grouping and
learning the parameters of the proposed method). The EUR/GBP cur-
rency pair was used for the conducted experiments.

Method Indv. PnL Ensemble PnL

Layer Normalization −0.286 ± 0.318 0.274
Proposed (groups, no train) 0.124 ± 0.150 0.544
Proposed 0.206 ± 0.175 0.713

“Layer Normalization” does not employ any kind of grouping,
while “Proposed (group, no train)” just use the proposed normal-
ization scheme without any end-to-end learning (but employs
the proposed grouping operation). Both the individual agent’s
PnL, as well the PnL of the ensemble model are reported.

We also performed an ablation study evaluating the
effect of training the layers employed in the proposed
method. The results are reported in Table 4. Note that the
proposed method is initialized to be equivalent to Layer
Normalization (with groups). Therefore, we also included
Layer Normalization in these ablation experiments. How-
ever, the proposed method is also capable of adjusting
the way the data are normalized according to the input
statistics, as the model is trained in an end-to-end fash-
ion. Indeed, as it is demonstrated, training the parameters
of the proposed method, as well as applying the proposed
grouping operation, always lead to a more profitable pol-
icy, increasing both the individual agents’ PnL, as well
as ensemble model’s PnL. We also evaluated the effect of
using a different number of groups, as shown in Table 5.
The optimal number of groups is probably related to the
size of the input window. In this work, the optimal perfor-
mance is obtained for groups that process 30 observations
(4 groups). We hypothesize that the optimal value for this
parameter is dependant to the nature of the used dataset,
as well as to the size of the input.

4. Conclusions

In this work, a deep adaptive input normalization
method, which aims to better exploit the various trends by
employing a group-based approach, was presented. The
proposed method uses two sub-layers that shift and scale
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Table 5: Effect of number of groups on the individual agents and their
ensemble model’s PnL using the proposed method. The results are re-
ported using the EUR/GBP currency pair

# of groups Indv. PnL Ensemble PnL

2 Groups 0.079 ± 0.226 0.498
4 Groups 0.206 ± 0.175 0.713
6 Groups 0.103 ± 0.224 0.471

the input which comprises sequential raw close prices
from FOREX. To validate its effectiveness, we used the
PPO algorithm and evaluated it in different conditions
with two FOREX currency pairs. As it was demonstrated
through the conducted experiments, the proposed method
obtained the most profitable policy in comparison with
other well-known and established methods. At the same
time, the experimental evaluation also indicates that the
number of blocks used in the proposed method can have
a significant impact on the performance of the proposed
method.

The proposed method paves the way for developing
more sophisticated input normalization approaches for
DRL agents for financial data, such as using differen-
tiable and trainable stationary feature extraction layers
(Tsantekidis et al., 2017), as well as using normaliza-
tion schemes that do not discard the mode information,
which can be potentially useful for further improving the
performance of the employed DRL agents, such as using
more advanced summary representations, such as Bag-of-
Features-based representations (Iosifidis et al., 2014) and
Fished-based encoding (Perronnin et al., 2010; Gosselin
et al., 2014). Finally, the proposed method could be ex-
tended in order to be used for other tasks that might in-
volve potentially non-stationary time-series as an input.
This is further supported by recent evidence on a differ-
ent, yet related domain, where it was demonstrated that
adaptive normalization approaches can improve the fore-
casting performance for tasks that range from trend pre-
diction (Passalis et al., 2019) to short-term load forecast-
ing (Passalis and Tefas, 2020).
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