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ABSTRACT

In this paper, we propose a novel automatic video captioning system which translates videos to sen-
tences, utilizing a deep neural network that is composed of three building parts of convolutional and
recurrent structure. That is, the first subnetwork operates as feature extractor of single frames. The
second subnetwork is a three-stream network, capable of capturing spatial semantic information in the
first stream, temporal semantic information in the second stream, and global video concept informa-
tion in the third stream. The third subnetwork generates relevant textual captions using as input the
spatiotemporal features of the second subnetwork. The experimental validation indicates the effective-
ness of the proposed model, achieving superior performance over competitive methods.

© 2021 Elsevier Ltd. All rights reserved.

1. Introduction

Over the past few years, deep learning algorithms, [5], and principally the deep Convolutional Neural Network (CNN) architec-

tures, [16], have been established as one of the most promising avenues of research in computer vision area, providing outstanding

performance in a plethora of computer vision tasks, such as image classification, [14], and face recognition, [24]. Furthermore,

recent works, [11, 28], indicate that by combining convolutional and recurrent neural networks comprising of Long Short-Term

Memory (LSTM) modules, [9], hybrid models can be trained that are capable of translating image or video content to regular text,

carving new routes in computer vision research.

The task of automatic video captioning constitutes a fundamental challenge in computer vision. Among the most beneficial

applications is the assistance of the visually impaired. Furthermore, considering the large amount of video data uploaded every

day on popular sites such as YouTube, as well as the amount of videos that are poorly tagged, automatic video captioning can aid

indexing by providing more accurate search terms.

In this paper, we propose a novel automatic video captioning system which translates videos to sentences, using a deep neural

network that is composed of three subnetworks. The first one operates as feature extractor of single frames. The second one is a

three-stream network, capable of capturing different kinds of information. That is, it captures spatial semantic information in the
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first stream, temporal semantic information in the second stream, and global video concept information in the third stream. Finally,

the third subnetwork generates relevant textual captions using as input the spatiotemporal features of the second subnetwork.

We built upon the work of [11] and [28] which takes advantage of a CNN followed by a Recurrent Neural Network (RNN)

composed of LSTM modules. These models are designed for static image captioning tasks, however in this work we focus on

generating sentences of text descriptions to video snippets, providing results on a new, larger and more challenging video dataset

with paired natural language descriptions, [29, 18].

The remainder of the manuscript is structured as follows. Section 2 discusses prior work. The proposed video captioning system

is described in detail in Section 3. The utilized datasets are presented in Section 4. Experimental results are provided in Section 5.

Finally, conclusions are drawn in Section 6.

2. Prior work

In this Section we survey previous image and video captioning works. Image captioning flourished over the recent years,

[7, 11, 31, 28, 12]. Briefly, in image captioning, a recurrent network is trained upon single feature vectors that are produced

by a preceding convolutional network, translating all visual information in the input image, following a one-to-many translation

approach, as in [11] and [28].

Subsequently, motivated by the success in image captioning, research attention naturally focused on generating sentences that

describe videos. The task of video captioning bears an additional challenge, that is to exploit both spatial and temporal information,

since videos contain both spatial information about a depicted scene as well as temporal information.

In [27], a model composed of a CNN followed by a RNN is proposed. A video is provided as input and one in ten frames is

sampled and forwarded through a CNN, which in turn produces a feature vector from the activations of the last fully connected

layer, that encodes the spatial content of the sampled frame. Mean pooling is performed over all the feature vectors of the frames,

in order to produce a single feature vector for the entire video, which is forwarded on to the RNN which in turn provides the

text caption. The major flaw of this model is that only global information of the frames is exploited, disregarding the temporal

information hidden in the sequence of subsequent frames, as well as the localized spatial information in each scene.

Subsequently, in [26], a model that aims to exploit temporal information, and uses an LSTM to convert a sequence of video frames

into a sequence of words, is proposed. The authors consider the task of video captioning analogous to machine translation, where

a sequence of words in the input language is translated into a sequence of words in the output language. However, we argue that

this does not depict sufficiently the problem since when translating languages we have a limited vocabulary of specific words of

the input language and a limited set of word combinations, while here we encounter sequences of high dimensional feature vectors,

which can greatly vary, preventing the model from generalizing.
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In [30] a model that exploits the temporal structure in videos, utilizing a temporal attention mechanism is proposed. This

mechanism allows the decoder to selectively focus on a subset of frames, similarly to our model, however it considers local short

variations in the time domain.

In [15], the authors proposed a framework to automatically generate descriptions for video clips, by applying a temporal attention

mechanism to the sequence-to-sequence LSTM model.

Subsequently, from a different viewpoint the authors in [32] focus on the sentence decoder, and propose a hierarchical model

containing a sentence and a paragraph generator: short sentences are produced by a Gated Recurrent Unit (GRU) [4] layer condi-

tioned on video features, while another recurrent layer is in charge of generating paragraphs by combining sentence vectors and

contextual information. The paragraph generator can therefore capture inter-sentence dependencies and generate a sequence of

related and consecutive sentences.

In [19] a 2-D/3-D CNN is utilized to extract visual features of selected video frames/clips and the video representations are

produced by mean pooling over these visual features. The attributes from two sources are fused and leveraged for enhancing

video captioning. Then, a LSTM for generating video description is learnt by feeding into both video representations and semantic

attributes mined from images and videos. In addition, to better leverage the attributes from two sources, a transfer unit is devised to

dynamically balance the influence in between given the input word and the hidden state in LSTM.

Finally, in [1] the authors propose a recurrent video encoder which takes as input a sequence of visual features and outputs a

sequence of vectors as the representation for the whole video. In their encoder, the connectivity schema of the layer varies with

respect to both the current input and the hidden state, so it is thought as an activation instead of being a non learnable hyperparameter.

To this aim, a time boundary-aware recurrent cell is defined, which can modify the layer connectivity through time. This ensures

that the input data following a time boundary are not influenced by those seen before the boundary, and generates a hierarchical

representation of the video in which each chunk is composed by homogeneous frames.

3. Proposed video captioning model

In this paper we propose a complete video captioning system, that is composed of three building parts of convolutional and

recurrent structure. The first subnetwork is a CNN model, which operates as feature extractor of single frames. Towards this

end, we utilize a common CNN pretrained model, that is the VGG-16, [22] pretrained on ILSVRC-2014 [21] for classifying 1.3

million images to 1000 ImageNet classes. The second subnetwork, is a three-stream network capable of capturing various kinds

of information, while the third subnetwork is a RNN consisting of LSTM modules, that aims to generate relevant textual captions

utilizing features obtained from the second subnetwork.
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Fig. 1: The proposed video captioning system architecture.

As other state-of-the-art works are based on ideas emerged in the image captioning domain, and aim to introduce temporal

information, in this work, we built upon a successful image captioning method, and we propose a three stream network, capable

of capturing spatial semantic, temporal semantic, and global video concept information. That is, our major contribution lies in the

intermediate incorporation of three parallel streams. Each stream is responsible for acquiring:

• summarization of localized dynamic concepts (stream-1)

• global dynamic concepts (stream-2)

• summarization of global dynamic concepts (stream-3)

Thus, each stream focuses on specific tasks. Collecting spatial, temporal and global encodings, about a video scene, produces

another type of encoding for the recurrent network to translate with every stream having its contributing factor to the resulting

encoding. Hence, by combining all the extracted spatiotemporal information, we obtain more complete and accurate captions in

videos. The three building parts composing the proposed captioning model are described in the following Subsections. An overview

of the proposed video captioning system architecture is provided in Fig. 1.

The idea of the proposed work is rooted in the standard utilization of the two-subnetwork approach, involving a convolutional
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network and a recurrent network, in image captioning models [11, 28]. Each of the subnetworks plays a crucial role for the task of

image captioning. That is, the first subnetwork acts as an encoder of images to feature vectors, while the second subnetwork acts

as a decoder, translating the information hidden in the encodings to text sentences. Hence, in this paper, addressing the additional

challenge of video captioning, that is the demand of acquiring information both for the objects depicted in the scene as for the

timings of the scene’s events, we propose the insertion of an intermediate 3-stream subnetwork that collects spatial, temporal and

global encodings, about a video scene. Thus, it is produced another type of encoding for the recurrent network to translate and

every stream has its contributing factor to the resulting encoding. Surveying the relevant literature, we observe the utilization of

either spatial, temporal or global features separately. For example, we have seen the mean of feature vectors extracted from certain

fully connected layer (i.e. fc7) of the convolutional subnetwork [27], to be used as a global encoding forwarded to the following

recurrent network, but this approach falls short to provide detailed information about both the object positions and event times in a

video scene. Table 1 summarizes the different kinds of information captured from the three-stream network. That is, it is shown the

utilized layer for the feature extraction, the dimensions of the extracted features, and the kind of captured information.

Table 1: Three-Stream - Information

Feature Representation Information
Layer Dim Temporal Spatial Global

Last Convolutional [512,14,14] - X -
Fully Connected [25,64,64] X - X
Fully Connected [1,4096] - - X

3.1. Part I: CNN model

As mentioned previously, in this work we utilize the VGG 16-layer model pretrained on the IILSVRC-2014 to classify 1,000

ImageNet classes. The model consists of sixteen trained neural layers; the first thirteen are convolutional and the remaining three

are fully connected. Max-pooling layers follow the second, forth, seventh, tenth, and thirteenth convolutional layers, while the

ReLU non-linearity ( f (x) = max(0, x)) is applied to every convolutional and fully connected layer, except the last fully connected

layer. The output of the last fully connected layer is a distribution over 1000 ImageNet classes. The softmax loss is used during the

training.

3.1.1. Feature Extraction

For a given video dataset (including caption-video correspondence), we sample a fixed number of 25 frames per video at equal

frame distances. Each frame is passed through the VGG-16 model. We utilize the last convolutional layer, since the convolutional
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layers capture spatial information, and for each frame we derive its feature representation, which is a volume of size [512, 14, 14].

Then we calculate the mean feature vector of the 25 frames and thus obtain one spatial representation per video.

Subsequently, we utilize the second fully connected layer, since the fully connected layers are meant to capture high level

semantic concepts. Thus for each frame we obtain a 1-D feature vector consisting of 4096 positive floating point numbers. After

extraction, we fold it into a 2-D vector of size [64, 64] and stack each sampled and folded feature vector, forming a 3-D volume

of size [25, 64, 64]. Regarding the ”folding” procedure, we should note that there is no guarantee that meaningful patterns will be

formed, however we have observed in the experiments that indeed such patterns are formed since this 2d rearrangement enhances the

performance, and also allows us to use 2d convolutions. Subsequently, based on this observation, we also performed experiments

aiming to create a more meaningful 2d arrangement using rearrangement of the 4096 concepts based on their correlation. However,

we did not observe any significant improvement, while this rearrangement was also computationally expensive. Thus, we kept the

initial order of the features. We should also note that using convolutional layers instead of dense ones keeps the number of trainable

parameters to a level that acts also as a regularizer.

Lastly, we calculate the mean vector of the 25 feature vectors extracted at the fully connected layer per video. This corresponds

to a 1-D vector of size [1, 4096] which constitutes a summarization of the global dynamic concept per video.

3.2. Part II: The intermediate 3-stream neural network

The second part of the proposed model, is a three-stream network architecture, allowing for treating the extracted vectors of

sizes [512, 14, 14], [25, 64, 64] and [1, 4096]. The 3-stream neural network, consists of two CNNs (streams 1 and 2) and a simple

fully-connected layer (stream 3), placed in parallel. The network outputs a vectorized encoding of 512 numbers in each stream, and

the concatenated result (which is a 1-D fixed size vector of 1536 numbers) is forwarded to the LSTM so that the predicted captions

are generated.

3.2.1. Stream-1

The CNN, placed in the first stream, consists of 1 main bottleneck convolutional layer divided into 3 convolutional sublayers,

each using kernels of size 1 × 1, 3 × 3 and 1 × 1, with no padding and stride 1, and three fully connected layers. All layers are

followed by a Parametric Rectified Linear Unit (PReLU [8]) and a Batch Normalization (BatchNorm [10]) module, while max

pooling is applied at the last convolutional sublayer. This stream receives its input from the last convolutional layer of the VGG-16

model and is responsible for capturing spatial semantic information.

3.2.2. Stream-2

The CNN, placed in the second stream is responsible for action recognition. It consists of 2 convolutional and three fully

connected layers. The first convolutional layer uses kernels of size 7 × 7 with padding 3 and stride 4 and the second uses kernels
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5 × 5 with padding 2 and stride 4, for performing convolutions, respectively. All layers are followed by a PReLU and BatchNorm

module.

The reshaped feature representations, allowing the 2-D convolutions to be performed, of the second fully connected layer of size

[25, 64, 64], are fed to the second stream, aiming to exploit temporal information in frame sequences. Note that by transforming

a 1-D feature vector of size [1, 4096] into a 2-D vector of size [64, 64] we do not change anything in the encodings, but provide

additional spatial dimensionality for the CNN. Moreover, the entire 3-D stack of size [25, 64, 64] contains temporal information

about the whole video in depth.

3.2.3. Stream-3

The third stream is a simple fully-connected layer, which transforms a vector [1, 4096] into a vector [1, 512]. We use the PReLU

non-linearity, as in the previous two streams. This stream receives its input from the second fully connected layer of the pretrained

model, by averaging the feature representations of all the video frames. We note that the feature used here is just a mean of the

sampled fc7 vectors as used in [27]. This serves only as a global dynamic concept for the entire video as all temporal information

would be lost through the mean operation.

3.3. Part III: The LSTM network

The language modeller which corresponds to the recurrent part of our video captioner consists of a 1-layer network of 512

LSTM units. The network is provided a special <START> token (x0) to initialize along with the concatenated fixed size vector

(h0) extracted from the 3-stream CNN as input. In time step t the network outputs a vector yt, which in turn is transformed into a

1-hot-encoding, that corresponds to a specific word in our vocabulary. The vector yt is then fed into the next time step as xt+1, as

input along with the vector ht which carries new and past information about the sentence. This procedure continues until a special

<END> token is generated.

The vocabulary used, is created by a suitable dataset, containing videos and sentence descriptions. These descriptions are

processed, in such a way that words with a small number of occurrences or strange characters are omitted. The vocabulary then is

made of N unique words and defines the length of the 1-hot-encoding vector. This vector is used to point to a specific word in the

vocabulary. The RNN’s goal is to perform a translation of the fixed size vector to a sequence of words forming a natural sentence

describing the initial video content.

In every unit’s core and at every time step, there is a memory cell encoding information of inputs that have been observed until

that point. The cell’s behaviour is controlled, by “gates” (layers that are applied and thus can either keep a value, if the gate returns

1, or reject it, if it returns 0). In a LSTM unit, there are three gates which control whether to forget the current cell value (forget

gate f ), read its input (input gate i) or output the new cell value (output gate o). The definition of gates, cell update and output are
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described by the following equations:

ft = σ(W f · [ht−1, xt] + b f ) (1)

it = σ(Wi · [ht−1, xt] + bi) (2)

ot = σ(Wo · [ht−1, xt] + bo) (3)

C̃t = tanh(WC · [ht−1, xt] + bC) (4)

Ct = ft � Ct−1 + it � C̃t (5)

ht = ot � tanh(Ct) (6)

where � represents element-wise multiplication, W f , Wi, Wo, WC , b f , bi, bo and bC are trainable parameters and biases, ft, it and

ot are the forget, input and output gate outputs, respectively, C̃t is the cell update, Ct is the new cell state and finally ht is the cell

output which is then fed into a Softmax, that will produce a probability distribution over all words in the vocabulary.

3.4. Training

We argue that the most important feature that differentiates images from videos is the temporal information exists in videos, that

allows us to better recognize the temporal actions. Especially, for describing the content of a video that depicts people, recognizing

their actions is crucial for the correct description. This is indeed a drawback of all the competitive methods that do not utilize

temporal information. Thus, in this work, before including our stream networks in the training step of our entire video captioning

model, we chose to train the weights of the second stream of the second subnetwork on the action classification dataset UCF-101

[23], since this is exactly the main task this stream should solve. That is to extract representations that help distinguishing the

different human actions which in turn will help the RNN to generate correct video descriptions. This dataset consists of 13500

videos divided in 101 action related categories. According to the recommended splits, the extracted feature vectors of 9537 videos

were used for training and 3783 for validation.

We then proceed with the training of the whole video captioning model in two steps. First, we use a pretrained VGG network

as a feature extractor, in order to build the input dataset for the second stage preserving caption correspondence. Note that the VGG

layer could also be finetuned in an end-to-end fashion, however this comes with additional computational cost. At the second stage,

the created dataset of extracted feature vector triplets is passed as input to the pretrained 3-stream CNN. Its output is then forwarded

on to the LSTM, which eventually yields the predicted caption for the initial video.
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Subsequently, following the feature vector triplet input concept and similarly to [28], we propose to maximize the probability of

the correct description given the vector triplet (v1[512, 14, 14], v2[25, 64, 64] and v3[1, 4096]), by using the following formulation:

θ∗ = arg max
θ

∑
(v1,v2,v3,s)

log p[s|(v1, v2, v3); θ] (7)

where θ are the parameters of our model, v1 and v2 are the VGG-extracted volumes of sizes [512, 14, 14] and [25, 64, 64], respec-

tively, v3 is the average of 25 reshaped vectors taken from v2 ([25, 64, 64] is reshaped to [25, 4096] which in turn is averaged to

[1, 4096]) and s is the corresponding correct caption of the initial input video. Since s represents any sentence its length is un-

bounded. Thus, applying the chain rule to the model, the joint probability over s0, ..., sN , where N is the sentence length (in words)

is expressed:

log p[s|(v1, v2, v3)] =

N∑
t=0

log p[st |(v1, v2, v3), s0, ..., st−1] (8)

where the dependency on θ is dropped for convenience. At training time, s and (v1, v2, v3) is a training example triplet and we

optimize the sum of the log probabilities as described in (8) over the whole training set using the adaptive moment estimation

algorithm (Adam) [13], instead of the simple gradient descent.

4. Dataset

We trained and tested our model on the Microsoft Research Video Description Corpus (hereafter MSVD) [2], which contains

1970 short video snippets collected from YouTube (typically shorter than 10 seconds in length). There are almost 40 available

English descriptions per video, totalling approximately 85550 captions. Data augmentation methods (e.g. horizontal flipping and

cropping) also applied, resulting from 1200 training samples to 43200. In our experiments, we followed the following settings:

• Train set: 1200 videos and 49208 captions

• Validation set: 100 videos and 4098 captions

• Test set: 670 videos and 27402 captions

5. Experiments

In order to validate the performance of the proposed model, we conducted four experiments performing changes to our video

captioner, leading to four distinct models. These changes mainly concern the intermediate added CNNs. Two of them are obtained

by enabling the use of either stream 1 or 2 in the 3-stream CNN, the third is obtained by using both streams 1 and 2 in parallel and

the fourth is obtained by using all three streams in parallel.
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Additionally, at test time, our system can be executed as fully assembled, including the VGG network. This enables us to also

perform real-time video captioning, given the trained model.

For evaluating the accuracy of the generated captions we used the COCO-caption API1 [3], which returns a set of commonly

used evaluation metrics. The most commonly used metric so far in the image/video captioning literature has been the BLEU score

[20], which is a form of precision of word n-grams between generated and reference sentences (BLEU 1-4 scores correspond to

n-grams with n=1-4 respectively). Typically an output score of ‘1’ matches perfectly with the reference sentence, and a ‘0’ means

that the output sentence is completely unrelated to it. Even though this metric has some drawbacks, it has been shown to correlate

well with human evaluations. More recently, a novel metric called CIDER [25] measures consistency between n-gram occurrences

in generated and reference sentences, where this consistency is weighted by n-gram saliency and rarity. In addition, we provide

results using METEOR [6] and ROUGE [17] metrics. All of the prementioned approaches are quite similar in that they measure

syntactic similarities between two pieces of text, while each evaluation metric is designed to be correlated to some extent with

human judgment.

5.1. Experimental Results

Fig. 2: Training loss per trained model Fig. 3: Validation loss per trained model Fig. 4: Per model sums of metric scores on the MSVD validation set

In Table 2, we present the accuracy scores achieved in action classification over the corresponding validation sets of the UCF-

101 dataset.

Table 2: Average classification accuracy on validation set of UCF-101

Split Stream-2
top-1 top-5

split-1 72.29 88.95
split-2 72.11 89.39
split-3 69.06 87.20
average 71.15 88.51

In Table 3 we provide the captioning scores on the validation set of MSVD, while in Table 4 we the MSVD test set (consisting

1https://github.com/tylin/coco-caption
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of 670 videos) using four trained configurations (two singlestreams, one dualstream and the best perfoming triplestream).

Table 3: Captioning scores on the validation set of MSVD

Model BLEU-1 BLEU-2 BLEU-3 BLEU-4 Meteor Rouge-L CIDEr
Singlestream1 0.7277 0.6021 0.5029 0.4001 0.3173 0.6790 0.7298
Singlestream2 0.8042 0.7005 0.6078 0.5069 0.3629 0.7249 1.0148
Dualstream12 0.7733 0.6795 0.5981 0.5038 0.3366 0.7070 0.7230
Triplestream123 0.7943 0.6966 0.6031 0.4984 0.3553 0.7237 0.7242

Table 4: Captioning scores on the test set of MSVD

Model BLEU-1 BLEU-2 BLEU-3 BLEU-4 Meteor Rouge-L CIDEr
Singlestream1 0.7167 0.5738 0.4706 0.3633 0.2817 0.6368 0.4172
Singlestream2 0.7553 0.6317 0.5353 0.4361 0.3138 0.6745 0.5405
Dualstream12 0.7576 0.6331 0.5336 0.4319 0.3185 0.6729 0.5970
Triplestream123 0.7811 0.6643 0.5593 0.4502 0.3380 0.6962 0.6328

In Table 5, we present the comparisons results of the proposed method against competitive ones on the MSVD dataset. As we

can observe the proposed method outperforms the previous methods presented in [27], [26], [30], and [15].

We trained each model for at least 40 epochs. In Figures 2 and 3 we present the losses for the training and validation sets,

respectively, while in Figure 4 we present the sums of all metric scores used on the MSVD validation set. In Fig. 5 we include a

captioning example, produced by our system for visualization purposes. Additionally, we have uploaded a demonstration video on

YouTube2, featuring our model in action on a few video clips.

6. Conclusions

In this paper we proposed a novel automatic video captioning system, composing of three parts. The first one is a CNN model

which acts as a feature extractor of single frames. The second is a three-stream network capable of capturing different kinds of

information, and finally the third is a RNN model which generates the textual captions that are often not exactly the same as any

of the sentences in the ground-truth set, which is an indication that the network succeeds on generalizing and is not overfitted.

Experimental validation in a challenging video dataset indicated the effectiveness of the proposed captioning system.
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Table 5: Comparisons to other Video captioning methods on the test set of MSVD - Best results of each method are printed in bold

Model BLEU Meteor CIDEr
[27] LSTM-YT (Basic) 0.3119 0.2687 -
[27] LSTM-YT (Flickr30k) 0.3203 0.2787 -
[27] LSTM-YT (COCO) 0.3329 0.2907 -
[27] LSTM-YT (COCO+Flickr30k) 0.3329 0.2888 -
[30] Enc-Dec (Basic) 0.3869 0.2868 0.4478
[30] + Local (3D-CNN) 0.3875 0.2832 0.5087
[30] + Global (Temporal Attention) 0.4028 0.2900 0.4801
[30] + Local + Global 0.4192 0.2960 0.5167
[15]- VGG16 non-attention 0.381 0.300 0.562
[15] - VGG16 dot 0.411 0.307 0.574
[15] - VGG16 bilinear 0.407 0.310 0.615
[15] - VGG16 concat 0.390 0.310 0.595
[15] - VGG16 sum 0.385 0.306 0.584
[26] S2VT RGB (VGG) random frame order - 0.282 -
[26] S2VT RGB (VGG) - 0.292 -
[26] S2VT RGB (VGG) + Flow (AlexNet) - 0.298 -
Ours-Singlestream1 0.5311 0.2817 0.4172
Ours-Singlestream2 0.5896 0.3138 0.5405
Ours-Dualstream12 0.5891 0.3185 0.5970
Ours-Triplestream123 0.6137 0.3380 0.6328
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frame 1 of 210 frame 9 of 210 frame 18 of 210 frame 27 of 210 frame 35 of 210

frame 44 of 210 frame 53 of 210 frame 61 of 210 frame 70 of 210 frame 79 of 210
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