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The relentless growth of Artificial Intelligence (AI) workloads 

has fueled the drive towards non-Von Neuman architectures and 
custom computing hardware. Neuromorphic photonic engines 
aspire to synergize the low-power and high-bandwidth credentials 
of light-based deployments with novel architectures, towards 
surpassing the computing performance of their electronic 
counterparts. In this paper, we review recent progress in 
integrated photonic neuromorphic architectures and analyze the 
architectural and photonic hardware-based factors that limit their 
performance. Subsequently, we present our approach towards 
transforming silicon coherent neuromorphic layouts into high-
speed and high-accuracy Deep Learning (DL) engines by 
combining robust architectures with hardware-aware DL 
training. Circuit robustness is ensured through a crossbar layout 
that circumvents insertion loss and fidelity constraints of state-of-
the-art linear optical designs. Concurrently, we employ DL 
training models adapted to the underlying photonic hardware, 
incorporating noise- and bandwidth-limitations together with the 
supported activation function directly into Neural Network (NN) 
training. We validate experimentally the high-speed and high-
accuracy advantages of hardware-aware DL models when 
combined with robust architectures through a SiPho prototype 
implementing a single column of a 4:4 photonic crossbar. This was 
utilized as the pen-ultimate hidden layer of a NN, revealing up to 
5.93% accuracy improvement at 5GMAC/sec/axon when noise-
aware training is enforced and allowing accuracies of 99.15% and 
79.8% for the MNIST and CIFAR-10 classification tasks. 
Channel-aware training was then demonstrated by integrating the 
frequency response of the photonic hardware in NN training, with 
its experimental validation with the MNIST dataset revealing an 
accuracy increase of 12.93% at a record-high rate of 
25GMAC/sec/axon. 

Index Terms—neural networks, neuromorphic computing, 
neuromorphic photonics, optical neural network accelerators. 

I. INTRODUCTION 

HE sensational success of DL-based [1] NNs in tackling 
a wide range of problems, has revolutionized a wide range 

of applications, including e.g. image processing, computer 
vision [2] and bioinformatics [3], and has rekindled the 
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scientific community’s interest in AI. This success, however, 
was not solely based on theoretical advances, yet leveraged the 
availability of huge training data sets [4] and the constant 
growth of computing power. With Moore’s Law apparent 
slow-down during the last decade [5], custom hardware and 
brain-inspired computing architectures are expected to be the 
upcoming major drivers of processing power growth during the 
next decade [6].  

In this context, the photonic research community has been 
heavily investigating optical-based neuromorphic hardware 
[7]-[21], aspiring to capitalize on the same set of properties that 
fueled the development and eventual dominance of optical 
interconnects in the network domain i.e. (i) the high-bandwidth 
of optical components [22], that can in principle allow for tens 
of giga Multiply-Accumulate (MAC) operations per second (ii) 
the broadband signal carrying capabilities of light, that can be 
multiplexed in mode, polarization and wavelength [13]  and act 
effectively as a processing power multiplication factor (iii) the 
low-energy and high footprint efficiency photonic components 
that can allow for ultra-dense, low-power deployments [23]-
[25]. These advantages have shaped the neuromorphic 
photonics roadmaps, heralding orders of magnitude 
improvements compared to the electronic implementations with 
computational energy and area efficiency estimations predicted 
to reach a few fJ/MAC and >TMAC/sec/mm2, respectively 
[26]-[28]. Turning these expectations into a tangible reality 
requires, however, a synergistic co-design and co-development 
roadmap among all constituent scientific and technological 
fields, extending from the underlying linear optical theory and 
architectures to the specific component design, ensuring at all 
times seamless integration of the photonic hardware 
idiosyncrasy in the DL methods and designs.  

In this paper, we review recent progress in integrated 
photonic neuromorphic architectures and associated challenges, 
discussing both architectural and hardware-based performance 
degradation factors. We discuss the different origins of error in 
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experimentally realized matrix-vector multiplication (MVM) 
engines and we present our approach for counteracting physical 
errors towards high-performance coherent silicon photonic DL 
engines, combining robust circuit architectures together with 
DL training models that are optimally adapted to the 
idiosyncrasy of the underlying photonic hardware. On the 
architectural level, robustness is offered by a novel universal 
optical linear crossbar layout [29] that has been inspired by 
relevant configurations adopted by analog electronic in-
memory computing and recent advances in optical MVM 
theory [30]. We validate its high-performance credentials 
through a SiPho integrated Photonic Neural Network (PNN) 
prototype that realizes the first column of a 4:4 crossbar (Xbar), 
benchmarking its performance in the well-known MNIST [19] 
and CIFAR-10 classification tasks at 5 and 10 GMAC/sec/axon 
compute line-rates, i.e., >6 orders of magnitude higher than 
respective state-of-the-art coherent NN layouts. This SiPho 
layout is then combined with hardware-aware training models 
where a sin2(x) photonically implemented non-linear activation 
function together with noise- and bandwidth-induced 
limitations are a priori included in the training process, allowing 
in this way for additional accuracy and compute rate per axon 
gains. Noise-aware training is experimentally shown to allow 
for up to 5.93% accuracy improvement at 5 GMAC/sec/axon, 
yielding accuracy values of up to 99.15% and 79.8% for the 
MNIST and CIFAR-10 classification tasks, respectively. 
Additional noise originating from bandwidth limiting effects 
can be counteracted through a channel-response-aware training 
model. In this case, the frequency response of the photonic NN 
hardware gets embedded into the DL training process and an 
experimentally obtained accuracy increase of 12.93% at a 
record-high compute rate of 25 GMAC/sec/axon is presented 
for the MNIST dataset [20]. This underlines a photonic NN 
compute rate per axon that is >3.5x higher than the available 3-
dB bandwidth of 7 GHz supported by the SiPho neuron 
prototype. 

II. STATE-OF-THE-ART OVERVIEW AND PERFORMANCE 

DEGRADATION FACTORS IN NEUROMORPHIC PHOTONICS 

The roadmap of neuromorphic photonics towards meeting the 
high computational power and computational area efficiency 
expectations has to proceed along integrated photonic solutions 
and high computational rates per axon, i.e., per each neuron 
synapse, maintaining at the same time bit precision of at least 
5-bits [26]-[28]. At the same time, their architectural layout has 
to support rather large NxN weight matrix deployments, so that 
the data signals remain as much as possible in the optical 
domain in order to provide the highest possible number of MAC 
operations for a given energy consumed by the photonic fan-in 
and photonic reception site. This can be easily identified by 
assuming an optical NxN weight matrix that gets multiplied by 
an N:1 optical input vector and yields an N:1 optical output 
vector, where every weighing node consumes a power of PW 
Watts and an area of AW mm2, every input optical modulator 
used for producing the optical input vector consumes a power 
of PX Watts and an area of AX mm2, and every photonic receiver 
circuit consumes PY Watts and has a footprint of AY mm2. In 

such a scenario, the total energy consumed equals 𝑁𝑃
𝑁𝑃 𝑁 𝑃  Watts. Assuming an operation at B MAC/sec 
compute rate per axon, then the total compute rate equals N2B 
MAC/sec, leading to an energy efficiency of 
𝑁𝑃 𝑁𝑃 𝑁 𝑃 𝑁 𝐵⁄  J/MAC, which equals to 
𝑃 𝑃 / 𝑁𝐵 𝑃 /𝐵 and verifies that energy efficiency 

improves as N and B increase. Following a similar analysis for 
the computational area efficiency, the total area consumed by 
this circuit equals 𝑁𝐴 𝑁𝐴 𝑁 𝐴  mm2, suggesting an 
area efficiency of 𝑁 𝐵 𝑁𝐴 𝑁𝐴 𝑁 𝐴⁄
𝛮𝛣 𝐴 𝐴⁄ 𝛣 𝐴⁄  in MAC/sec/mm2, implying again a 

higher efficiency for increasing N and B. Finally, it should be 
noted, that the achieving higher compute rate is directly 
correlated to the achievable signal-to-noise ratio, as increasing 
the signal’s bandwidth leads to an increase in noise bandwidth. 

Increasing the compute rate per axon B and the circuit 
dimension N form actually the main approach towards 
competing with state-of-the-art electronic neuromorphic 
hardware, which utilize their high integration densities for 
increasing computational power through a large amount of 
neurons integrated on the same chip. However, a closer look 
into state-of-the-art neuromorphic photonic experimental 
deployments reveals easily that even the traditional stronghold 
of photonic technologies in sustaining high operational rates is 
not easily reflected in photonic NN layouts. Figure 1 illustrates 
the compute rate performance values in MAC/sec/axon 
reported by the rich variety of optical neural network 
experimental demonstrations presented within the last five 
years [7]-[18], with the level of integration ranging from MVM 
engines [10],[13],[16],[18] to fully-integrated neuron 
prototypes [7]-[9],[11],[12],[14],[15],[17] including both the 
algebraic operations and the non-linear activation function. 
Although different architectural schemes and different 
constituent integrated photonic technologies have been utilized 
in all these demonstrations, it can be easily observed that 
incoherent or Wavelength Division Multiplexing (WDM) 
architectures [11]-[18], were almost constantly within the GHz 

 
 
 

Fig. 1. Compute rate per axon performance of WDM and coherent
neuromorphic architectures demonstrated experimentally between 2016-2021.
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clock frequency operational area, allowing for a maximum of 
up to 11 GMAC/sec/axon compute rate accomplished only 
when off-chip data modulation was employed [12],[14],[17]. 
However, incoherent layouts typically require a different 
wavelength per single axon within a neuron, necessitating a 
high amount of wavelength resources for increasing fan-in and 
total computational power [13]. Single-channel optical neural 
networks can be accomplished only through coherent photonic 
interferometric layouts. This field has been until recently 
dominated by unitary optical linear matrix designs, where, 
however, the need for multiple cascaded stages of 2x2 Mach-
Zehnder interferometric (MZI) meshes enforces a tight control 
over individual device loss uniformity and phase adjustment. 
This control requirement, along with the related total insertion 
losses of cascaded MZI stages, that becomes more pronounced 
when using high-speed optical modulators in the GHz range, 
led previous demonstration in using low speed optical fan-in 
and weighting technologies and therefore achieve compute 
rates in the sub-MHz regime [7]-[10]. Computational rates 
higher than 10 GMAC/sec/axon with coherent neuromorphic 
photonic layouts have been only recently accomplished [19]-
[21], as shown in the top-right corner of Fig. 1, utilizing 
concepts and technologies that are overviewed in the following 
sections. Finally, it is worth mentioning that this comparative 
analysis doesn’t take into account limited lab-equipment 
availability, comparing only the reported compute rates.  

In order to identify and understand, the architectural and 
physical mechanisms that limit compute rate per axon 
performance, an analysis of both the absolute accuracy 
degrading constituents and the different noise sources 
impacting the neuromorphic photonic hardware is shown 
below. Fig. 2 (a) illustrates a generic layout of a WDM-based 
neuromorphic architecture, comprising a 4-channel input data 
vector, that is imprinted in the optical domain through optical 
modulators. The weighting functionality is typically 
implemented through the controlled attenuation enforced 
through wavelength-specific photonic components e.g., optical 
filters, while the weighted inputs are multiplexed through an 
optical multiplexer (MUX) and have finally their optical power 

levels summed in a photodiode. In case the targeted matrix-
vector product at each output is 𝑌 , ∑ 𝑥 ∗ 𝑤 , , possible 
hardware imperfections may enforce a δΧ and δW variation at 
the input data and weight values, respectively, yielding a final 
product of that equals: 

𝑌 , ∑ 𝑥 𝛿𝑋 ∗ 𝑤 𝛿                      (1) 

In the case of incoherent layouts, however, where every input 
and weight value xi and wi, respectively, are controlled through 
corresponding individual photonic modulator and weighting 
modules, these deviations can be compensated on a per module 
case by properly modifying the applied electrical driving signal. 
This simply implies that when input and weight values of xi and 
wi are targeted, the electrical driving voltages applied should 
correspond to slightly different values of 𝑥  and 𝑤 , so that 𝑥
𝛿𝑥 𝑥  and 𝑤 𝛿𝑤 𝑤 , allowing for the correct values to 
be imprinted in the optical domain. 
On the other hand, coherent-based layouts typically exploit two 
consecutive triangular [31] or rectangular MZI mesh layouts 
[32] within a Singular Value Decomposition (SVD) optical 
scheme, with an illustrative example of a 6-input matrix-vector 
multiplicator that adopts the rectangular mesh architecture 
depicted in Fig. 2 (b). In this case, the output signals are formed 
through the coherent interference of the decomposed optical 
beams that propagate through the cascaded MZI-stages. As 
such, the expected optical signal in the different outputs can be 
approximated for the 6-input case by 𝑌 , ∑ 𝑡 , 𝑋 𝐸 , with 
ti,j representing the electric field transmittivity between input i 
and output j, or equivalently the weight for the optical input Xi 
when emerging at output j. However, this architecture allows 
for multiple paths that connect input i and output j, suggesting 
that ti,j is formed by the sum of different transmittivity values 
𝑇 , , each value corresponding to a different optical route r. This 
can yield an additional error factor in the experimentally 
realized matrix-vector product when lossy optical nodes are 
assumed. Considering, for example, just the extreme cases of 
the longest and shortest optical paths between the first input and 
the first output with respective transmittivity values of 𝑇 ,  and 
𝑇 ,  when loss-less MZIs are assumed and ignoring all other 
possible routes between input #1 and output #1, the partial sum 
of the two interfering optical beams that contributes to the t1,1 
weight calculation should equal 𝑇 , 𝑇 , . However, in the 
case of lossy optical modules, the partial sum will be given by: 
 

 𝑡 , =𝑇 , ∙ 𝑎 𝑇 , ∙ 𝑎 𝑎 𝑇 , 𝑎 𝑇 ,           (2) 
 

, with α denoting the electrical field transmission coefficient for 
a single MZI and the factors α7 and α11 reflecting the 
transmission through seven and eleven MZI nodes in the 
shortest and longest route, respectively. Equation (2) reveals the 
presence of an inherent error introduced in the weight value t1,1 
when non-zero loss MZIs are employed, which originates from 
the differential path losses imposed on the constituent 
interfering optical beams. Taking this into account and 
considering also the hardware-induced input and weight value 
deviations at every MZI building block, the total signal 
emerging at each output within this type of coherent layouts can 

 
 
 

Fig. 2.  (a) Generic layout of a WDM-based neuromorphic layout (b) Generic
layout of a coherent-based neuromorphic layout based on the Clements
rectangular mesh. 
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be written as:  
 

   𝑌 , ∑ 𝑥 𝛿𝑥 ∙ 𝑤 𝛿𝑤 𝛿
,

         (3) 

,with δpath,i,j corresponding to the deviation originating  from the 
differential path loss of the unitary coherent layout. This term 
can be unfortunately not fully compensated in neither the 
triangular nor the rectangular MZI-based unitary layouts, 
requiring unavoidably the use of ultra-small insertion losses for 
every MZI in order to minimize the error at the output signal. 
 In addition to the architectural and fabrication variation 
induced accuracy degradation, the limited frequency response 
and noise profiles of the underlying electro-optic hardware 
further degrades accuracy and operational rate of the PNN. A 
detailed breakdown of the different types of noise imposed on 
the optical signal as it traverses through a single axon is 
illustrated in Fig. 3. The noise that originates from the optical 
laser source is denoted as nlaser and comprises primarily the 
Relative Intensity Noise (RIN), producing arbitrary power level 
fluctuations over time [33]. The input data imprinting procedure 
is impacted by the quantization noise of the employed 
RF/DAC [34], denoted as nQDAC, as well as from the bandwidth 
supported by the employed photonic modulator, denoted as Tf. 
The weight imprinting stage is considered to enforce a constant 
weight value when inference applications are targeted and as 
such can be approximated by a unity frequency response, while 
the quantization error of the weight imprinting DAC is denoted 
as nW. At the receiver side, the TIA thermal noise and Johnson 
shot noise originating from the photodiode (PD) are 
incorporated in the nPD/TIA additive noise term, with the noise 
originating from the receiver ADC being denoted as nQADC. The 
receiver also exhibits a typical low-pass filtering frequency 
response that is denoted as Tr, so that the total photonic channel 
response of the entire axon can be considered as having a 
spectral response equal to the product Tf •Tr.  
 Incorporating all the above factors into our matrix-vector 
product analysis and taking into account that the electrical 
current generated at the PD output has a linear relationship with 
the squared of the electrical field, a generic approximation of 
the optical neuron output can be given by: 
 

𝑌 , 𝑓 ∑ 𝑥 𝛿𝑥 ∗ 𝑤 𝛿𝑤 𝛿
,

⊙𝑇 𝛿𝛮     (4) 
 

with Tfch corresponding to the product of the frequency transfer 
functions of all constituent electronic and photonic 
components. The contributions of nQDAC and nW are included in 
the δxi and δwi terms, with all additional noise sources including 
nlaser, nPD/TIA and nQADC contributing to the term δΝ that can be 
in the general case approximated by additive white gaussian 
noise (AWGN) [35],[36]. The function f(ꞏ) stands for the 

nonlinear activation function employed at the axon output, with 
a typical case for PNNs comprising f(ꞏ)=sin2(ꞏ) when an MZI-
based modulation stage is employed at the neuron output and is 
driven by the ADC output signal. 

Equation (4) highlights the most significant challenges that a 
coherent neuromorphic photonic architecture has to overcome 
in order to offer high accuracy performance at high operational 
line-rates. Minimizing inaccuracies necessitates the use of: (i)  
robust circuit architectures that can minimize the inherent 
noise originating from fabrication variations and the differential 
optical path losses, forming a loss- and fabrication-tolerant 
design. At the same time, this should allow for low overall 
insertion losses so as to enable for higher optical power levels 
to reach the neuron output and improved Signal-to-Noise Ratio 
(SNR) values, (ii) hardware-aware DL training models, where 
analog noise, bandwidth and quantization limitations together 
with the experimentally realized activation function can be, by 
default, incorporated in the training process towards building 
resilient models that support high-accuracy performance. 

III. ROBUST SIPHO COHERENT LINEAR NEURON 

ARCHITECTURE 

 Coherent interferometric setups relying on the unitary matrix 
decomposition schemes proposed by Reck [31] and Clements 
[32] not only lead to differential optical path losses captured by 
the error term of 𝛿

,
 in eq.(4), but also require every weight 

value to depend on the control of multiple cascaded MZIs, 
obviously leading to the accumulation of hardware-induced 
deviations into an increased δw variation. We have recently 
proposed and demonstrated a dual-IQ-modulator-based 
coherent architecture [37] that allows for the direct mapping of 
the weight matrix values onto respective optical modules in the 
PNN, alleviates the need of cascaded stages of MZIs [30]-[32] 
and minimizes the associated layout-induced accuracy 
degradation. This architecture has been utilized in coherent 
neuromorphic photonic demonstrations and managed to break 
the 10 GMAC/sec/axon barrier, demonstrating computing rates 
of up to 25 GMAC/sec/axon as illustrated in Fig. 1. A 
generalized diagram of the proposed scheme for an N:1 linear 
neuron is illustrated in Fig. 4 (a). In this coherent photonic 
layout, the light entering the photonic neuron gets split in two 
optical beams, with the first optical beam entering a 1:N splitter 
to form the XNWN dot-product and the second optical beam 
being forwarded to the bias branch. The bias branch is 
implemented through a tunable MZI followed by a Phase 
Shifter (PS), while the XNWN stage comprises N identical 
branches, with every i-th branch imprinting the Xi data via an 
MZI modulator, the Wi sign through a PS, and the Wi weight 
absolute value through an additional tunable MZI. In the 
unconstrained NN implementation use case when the weight 
values can take any arbitrary positive or negative value, tuning 
of the weight sign phase-shifter and weight amplitude MZI 
shifter must be performed simultaneously. The XiWi products 
of all optical branches recombine then again via an N:1 
combiner stage to form the weighted input signal summation, 
which is subsequently interfering also with the bias signal to 

  
Fig. 3. Single PNN axon decomposition including main noise sources. 
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produce the circuit output. The sign information of the weight 
value is imprinted at the phase of the light beams with φ=0 and 
φ=π denoting a positive and a negative value, respectively. The 
constructive or destructive interference between the weighted 
sum signal originating from the XNWN stage and the bias signal 
translates a positive sum into an optical pulse and a negative 
sum into a power dip around the bias signal power level.  

The main advantage of our proposed architecture relies on its 
robustness to fabrication-related impairments that may lead to 
unbalanced optical losses between the different branches. 
Given that it allows for one-to-one mapping of the weight 
values into the respective optical modules at every branch, each 
branch can balance out both any insertion loss variation or 
phase mismatch through properly calibrating and fine-tuning its 
respective weight amplitude imprinting MZI and weight sign 
imprinting PS. The result of the on-chip transfer of the novel 
interferometric scheme is illustrated in Fig. 4 (b) and (c). Figure 
4 (b) depicts the wirebonded 4:1 linear PNN mounted on a 
special design PCB that allows seamless access to the electrical 
pads of the chip. The silicon chip was fabricated in 
Cornerstone’s Silicon Photonic 220nm platform using 1.8 mm-
long asymmetric push-pull Electro-Optic (EO) MZMs for the 
input data imprinting stage and 500um-long Thermo-Optic 
(TO) PSs for the weight sign and amplitude phases. Figure 4 (c) 

illustrates a microscope photo of the SiPho PNN prototype, 
highlighting also the 4 optical paths that allow the realization of 
the algebraic sum: ∑ 𝑋 𝑊 . 

Extending this single-neuron coherent interferometric layout 
into a multi-neuron coherent setup, where a matrix-vector 
multiplication Y=WꞏX between an N×M weight matrix W and 
an input N:1 vector X is realized, can be easily supported by 
adopting the scalability principle of the electronic Xbar layout 
shown in Fig. 5 (a). By splitting the optical Xi input signal into 
M identical copies and forwarding every copy into a respective 
N-branch weighting and N:1 recombination stage, the N:1 
optical input vector X will get multiplied by M vectors of N-
element weights or equivalently by a N×M weight matrix. This 
photonic Xbar layout is depicted in Fig. 5 (b) and has been 
theoretically validated to yield a universal linear optical 
operator [29],[38]  that has been so far supported only through 
SVD-based schemes enforced over unitary optical matrix 
configurations [30]-[32]. It can be easily identified that this 
photonic Xbar allows for increased loss-tolerance compared to 
state-of-the-art SVD/unitary designs, given that all its M 
weighting columns comprise M independent weight-and-
recombination stages. Given that intra-column hardware-
induced deviations can be compensated through the individual 
control of the intra-column circuit modules, as analyzed above 

 

 
Fig. 5.  (a) The electronic crossbar layout performing as the linear neural layer stage in analog electronic neural networks, (b) the corresponding analogous photonic
crossbar, weight imprinting is achieved through an MZM-based attenuator while sign imprinting is achieved through a phase shifter.  

 
 
Fig. 4.  (a) Schematic layout of the generic linear neuron (b) SiPho 4:1 neuron chip with up to 25 GMAC/sec/axon using EO-MZM mounted on a PCB (c) Microscope
photo of the SiPho chip, with the different optical path highlighted with yellow.  
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for the case of the N:1 coherent neuron, the use of M 
independent circuit columns allows then for efficient inter-
column loss-balancing by simply accommodating an M-
element attenuation or amplification stage at the column 
outputs, concluding in this way to a fidelity-restorable design 
[29]. On top of that, this layout retains the main advantage of 
the dual-IQ-modulator-based N:1 linear neuron that requires 
only two cascaded MZIs for input X and weight value W 
imprinting. This allows for a neuron total insertion loss that 
scales only linearly with the weighting MZI losses [29], in 
direct contrast to the exponential scaling experienced by SVD-
based implementations where cascaded MZIs are used in their 
unitary matrix constituents. The effect of this 
architectural-depended optical loss can be illustrated by 
comparing the total insertion loses of a 16×16 neuromorphic 
accelerator layout, following either the SVD-Clements or the 
Xbar layout, when the MZI losses are 1 dB. In the Clements-
case the optical signal traverses in the best case and worst case: 
Ts=2*⌊N/2⌋+1, Tl=2*N+1 nodes respectively, resulting to a 
total insertion loss, excluding the input stage, ranging from 
17 dB to 33 dB Considering now the Xbar layout, the optical 
signal traverses only a single weighting node, with the main 
insertion loss originating from the column/wise 1:16 splitter, 
that induces 12 dB of optical loss, concluding to 13 dB of total 
insertion loss, an improvement of 4-20 dB. This may unlock the 
potential for employing also high-speed photonic modulation 
technologies for both the input data and weight imprinting 
stages, which typically experience, however, higher insertion 
losses than the MZI weighting nodes employed so far in 
coherent inference engines [7]-[10]. This perspective can offer 
new layers of functionality for photonic neuromorphic 
hardware, eventually supporting also high-speed weight update 
rates that can be highly useful for on-chip photonic NN training 
engines [39]. Finally, as in both architectural approaches the 
total footprint is defined mainly by the optical weighting 
modules footprint, with their total number being N^2 for both 
cases, the Xbar and Clements-SVD layout share the shame 
footprint credentials. 

The performance of the 4:1 silicon PNN illustrated in 
Fig. 4 (b) was experimentally benchmarked for compute rates 
between 1-10 GMAC/sec by replacing both neurons in the 
penultimate hidden layer of an NN, trained to classify a sub-
section of both the handwritten digits of the MNIST dataset, as 
well as the tiny images of the CIFAR-10 dataset. The deployed 

NN model is depicted in Fig. 6 (a). It comprises 2 convolutional 
(CNN) layers, equipped with 32 and 64 3×3 filters respectively, 
followed by 3 linear layers that comprise 4, 2 and 1 linear 
neurons. A ReLU activation function was used in the first 3 
layers, with the sin2(x2) being employed as the activation 
function in the last 2 linear layers in order to account for the 
photonically realized activation function when the 4:1 PNN 
output signal is used for driving the electro-optic MZI-based X 
input data imprinting stage of the successive PNN layer. The 
input samples and the respective weights of each consecutive 
layer denoted as xi and wi produce the summation Σxiwi, which 
is in turn forwarded to the corresponding activation function f 
to realize the output f(Σxiwi). The software implementation of 
the proposed NN was realized in the PyTorch framework, 
where the network was initialized using the Xavier initialization 
with a gain of 2 and trained using the Adam optimizer for 20 
epochs, employing a batch size of 256 samples with a learning 
rate of 0.0001. For the MNIST classification scenario, a subset 
of 11552 images, corresponding to the 3 and 5 digits, were used 
during the training phase, while for the CIFAR-10 case the 
classifier was trained to discriminate between two  different tiny 
images. Following the training of the NN, the inference phase 
was performed by implementing the functionality of the 3rd 
Hidden Layer of the trained NN in the optical domain, as shown 
in the blue-highlighted section of Fig. 6 (a), where Hidden 
Layer#3 comprises two neurons that connect the 4 layer inputs 
with its 2 outputs. This was accomplished by sequentially 
interfacing in pairs the 4 Hidden Layer#2 outputs, as the x1, x2 
and x3, x4 input signals, to the 4-channel PNN prototype and 
then utilizing the respective optically computed weighted sums 
Σ1 and Σ2 to feed the NN output layer.  

Figure 6 (b) illustrates a top-down schematic diagram of the 
utilized photonic prototype, along with the experimental setup 
and deployed DSP chain blocks utilized during the evaluation 
procedure. A light beam at λ1=1554.55 nm was injected to the 
SiPho chip via a pdk-ready TE grating coupler. The |Wbias| TO 
MZI was used to control the bias branch amplitude, while the 
PSbias was used to control its phase. Two push-pull EO-MZMs 
were deployed to optically imprint the corresponding x1 and x2 
values originating from the NN, while the respective |w1| and 
|w2| values were imprinted through TO MZIs |w1| and |w2| and 
their corresponding signs through calibrating the TO-PS PS1 
and PS2, respectively. In order to interface the x1 and x2 data 
emerging from the NN to the integrated 4:1 PNN, their 

 
 

Fig. 6.  (a) NN architecture for MNIST and CIFAR-10 classification, (b) Schematic diagram and experimental setup used to validate the performance of the 4-input 
PNN, including the deployed DSP stack 
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respective waveforms were upsampled from 1 to 60, 12 or 6 
samples per symbol (sps), corresponding to operational data-
rates of 1, 5 and 10 GSymbols/s, and were then filtered by a 
Gaussian filter with a band-factor of 0.8. The resulting signals 
were finally quantized before being uploaded to Keysight’s 
M8195a Arbitrary Waveform Generator (AWG) operating at 60 
GSa/s. The 2 output signals and their differential copies 
originating from the AWG, were then forwarded to 4 
SHF100BO-ML RF amplifiers to drive the 2 push-pull MZMs 
with approximately 3Vpp. The SiPho output optical signal was 
converted to the electrical domain by means of a PIN 
photodetector with 50 GHz 3dB bandwidth and was 
subsequently captured by a Keysight DSOZ632a Real Time 
Oscilloscope (RTO) with 80 GSa/s and 33 GHz bandwidth. The 
received signal was time-synchronized with the expected signal 
and was then filtered with a similar Gaussian filter before being 
downsampled to 1sps and forwarded to the next NN layer. The 
same procedure was followed for the experimental evaluation 
of x3 and x4 signals and their respective summation. 

Figure 7 (a)-(f) illustrate the experimentally obtained results 
during the evaluation of the MNIST dataset, with the blue 
curves representing the signal originating from the NN, after 
being processed in the Tx DSP stack, and the red curves the 

experimental derived traces after Rx DSP stack processing. 
More specifically, Fig. 7 (a) and (b) depict the x1 and x2 signals 
that were interfaced to the 4:1 PNN along with the acquired 
experimental traces, while Fig. 7 (c) illustrates their summation 
x1w1+x2w2 performed in the SiPho chip, along with their 
expected summation result. In this case, the x1 and x2 weights 
were equal to w1=0.58 and w2= 0.5, while the Mean Squared 
Error (MSE) across the 20,987,904 samples of the 
experimentally obtained waveforms and their expected 
counterparts was 9.87%, 7.54% and 10.64% for the x1, x2 and 
the Σ1 signals, respectively. The same procedure was carried 
out for the x3 and x4 signals, with the individual traces 
illustrated in Fig. 7 (d) and (e) and their algebraic summation in 
Fig. 7 (f). In this case, the w3 and w4 weights were equal to -
0.37 and 0.99, respectively, while the MSE was measured to be 
8.53%, 7.43% and 7.63% for the x3, x4 and the Σ2 signals, 
respectively. Fig. 7 (g) and (h) illustrate the histogram of the 
normalized error distributions of the Σ1 and Σ2 signals in 
respect to the expected summation results, with both of them 
corresponding to a Gaussian distribution with (μ,σ) = (0, 0.20). 
and (μ, σ) = (0, 0.25), respectively. Finally, Fig. 7 (i) depicts the 
obtained mean classification accuracies on the evaluated 
MNIST dataset, with accuracy values of 99.2%, 99.15 % and 

 
Fig. 7. Time traces of the NN’s expected and experimental signals for the MNIST classification task at 5 GMAC/s/axon (a) x1, (b) x2, (c) Σ1 (d) x3, (e) x4 and (f)
Σ2. (g) and (h) noise distributions of Σ1 and Σ2 (i) Accuracy and SNR measurements at 1, 5 and 10 GMAC/s/axon. 
  

 
Fig. 8. Time traces of the NN’s expected and experimental signals for the CIFAR classification task at 5 GMAC/s/axon (a) x1, (b) x2, (c) Σ1 (d) x3, (e) x4 and (f)
Σ2. (g) and (h) noise distributions of Σ1 and Σ2 (i) Accuracy and SNR measurements at 1, 5 and 10 GMAC/sec/axon. 
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96.19% achieved at 1, 5 and 10 GMAC/sec/axon compute rates, 
respectively. The corresponding SNR values were calculated 
equal to 17, 12 and 10 dB, respectively. 

Figure 8 (a)-(h) depict the experimental results obtained 
during the evaluation of the CIFAR dataset, following the same 
procedure as in the MNIST classification case. Fig. 8 (a) and 
(b) illustrate the x1 and x2 signals that were interfaced to the 
PNN along with the acquired experimental traces, while Fig. 8 
(c) illustrates their summation x1w1+x2w2 performed in the 
integrated chip, along with the expected NN input signal. In this 
case, the x1 and x2 weights were equal to w1=0.29 and w2= 
0.86, while the MSE of the experimentally derived traces and 
their expected counterparts was 3.22%, 8.85% and 11.51% for 
the x1, x2 and the Σ1 signals respectively. The same procedure 
was carried out for the x3 and x4 signals, with the respective 
results depicted in Fig. 8 (d), (e) and (f). In this case, the w3 and 
w4 weights were equal to -0.37 and 0.99, respectively, while 
the MSE was 5.33%, 5.88% and 9.72% for the x3, x4 and the 
Σ2 signals, respectively. Fig. 8 (g) and (h) illustrate the error 
distribution of the Σ1 and Σ2 signals, yielding mean and 
standard deviation values μ and σ that equal (μ, σ) = (0, 0.72). 
and (μ, σ) = (0, 0.28), respectively, when approximated by a 
Gaussian distribution. Finally, Fig. 8 (i) depicts the obtained 
classification accuracies on the CIFAR-10 dataset in 
comparison with the accuracy of 81.82% obtained when 
executed entirely by software, with accuracy values of 80.19%, 
79.8% and 78.1% achieved at 1, 5 and 10 GMAC/sec/axon data 
rates, respectively. The corresponding SNR values were 
calculated equal to 14, 11.1 and 9.7 dB, respectively. 

IV. PHOTONIC HARDWARE-AWARE DEEP LEARNING MODELS 

The circuit architecture of the SiPho coherent neuron allowed 
for up to 10 GMAC/sec/axon compute rates and for 
experimentally obtained accuracy values close to the reference 
values accomplished when executing the NN completely in the 
software domain, validating in this way its robustness in 
tolerating hardware-induced input and weight value deviations. 
Additional speed and accuracy improvements can be then 
enforced only by lifting the degradation effects of the remaining 
stochastic noise sources, or, alternatively, by deploying higher 
resilience DL training models. However, adapting DL training 
models and algorithms over the characteristics of the 
underlying analog photonic hardware has to account for a 
number of factors that are completely ignored in respective 
digital electronic NN models [40]. These include, among 
others, analog electro-optic noise, electro-optic bandwidth 
limitations, optical channel crosstalk, limited extinction ratio 
and value range, as well as new types of non-linear activation 
functions that can be realized experimentally in the electro-
optical domain but typically deviate from the traditional ReLU, 
sigmoid etc. activation functions employed in conventional DL 
models. On-going research in DL models specifically tailored 
for PNNs has led to some first encouraging findings, having 
already validated the potential to train NNs with photonic 
sin2(x2) [40] and photonic sigmoid activation 
functions [41],[42]. On the same line, quantization noise of the 
constituent DAC and ADCs has been quantified and the 
robustness of specially trained NN models in quantization 

limited use cases has been also validated [43]. Moreover, the 
effect of non-deterministic noise sources, that were 
approximated as AWGN in PNNs, was also studied both in 
feed-forward [35],[36] as well as in Recurrent PNN layouts 
[44],[45] revealing that specifically trained DL models can 
maintain their high accuracy credentials even when deployed 
onto relatively noisy photonic substrates. 

In this section, we present the deployment and experimental 
validation of DL algorithms and models tailored to the 
idiosyncrasy and hardware limitations of its underlying 
photonic platform. Two properly adapted DL models have been 
realized and experimentally validated over the SiPho PNN, 
focusing on analog electro-optic noise-aware and on channel-
response-aware training. The noise-aware training takes into 
account the non-deterministic noise sources of the photonic 
hardware, targeting at noise-resilient DL models that can 
restore accuracy values to the level accomplished within a 
noise-less hardware environment. Channel-response-aware 
training integrates the transfer function of the electro-optic 
hardware within the training procedure, aiming at compute rates 
per axon that go significantly beyond the available electro-optic 
channel bandwidth.  

A. Noise-aware Training 

To compensate for the non-deterministic noise sources that 
impact signal quality in the photonic PNN, a specialized DL 
model that treats the various non-deterministic noise 
contributions as AWGN [35],[36] has been designed. Matching 
the training with the experimental procedure can be 
accomplished by introducing zero-mean AWGN during the 
forward propagation phase of the NN training, using a noise 
standard deviation value that equals the respective standard 
deviation of the experimentally characterized noise. 
Experimental characterization of the PNN noise levels is 
performed through the analysis of a pilot test signal that 
propagates through the SiPho PNN. More specifically, a 
512-symbol-long pseudorandom bit sequence was transmitted 
through the PNN and the noise distribution of the captured 
output signal, comprising of 100 repetitions of the transmitted 

 

Fig. 9.  (a) Modified photonic NN MNIST classifier, that incorporates AWGN 
sources in the training phase (b) MNIST classification accuracy versus noise
standard deviation at 5 GMAC/axon/s. Solid lines represent the simulation-
based results and the scatter points the experimentally derived ones. 
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signal, was benchmarked versus the reference electrical 
waveform, revealing a gaussian shaped noise distribution with 
a standard deviation of 0.4. The line rate of the PRBS sequence 
was 5 Gbit/s, while a low-pass brick wall filter with a cut-off 
frequency of 8 GHz was used after sampling at an RTO. The 
same settings were applied during the photonic implementation 
of the NN, to conclude to the same frequency response and 
noise bandwidth for both experiments. This noise distribution 
arises from the additive summation of the different non-
deterministic noise sources and as such can approximate the 
non-deterministic noise behavior of the PNN. Fig. 9 (a) depicts 
the NN architecture that has been also used as the MNIST 
classifier in section 3, including the corresponding 
modifications in its photonic layer in order to interlace an 
AWGN module in its photonic axons. The retraining procedure 
was implemented in the PyTorch software model of the PNN, 
considering AWGN with a zero mean value and a standard 
deviation of σ=0.4 for 200 epochs.  

Figure 9 (b) illustrates the comparative accuracy 
performance between the noise-aware and the baseline MNIST 
classification models for different noise levels with a standard 
deviation ranging between 0 and 0.6 at a compute rate of 
5 GMAC/sec/axon, with the baseline model referring to the 
case of a noise-less environment. Increased noise levels were 
implemented experimentally by attenuating the power level of 
the neuron output signal prior reaching the receiver, resulting in 
this way to lower SNR values. Even though attenuating the 
optical power at the Rx side, attenuates also the noise 
originating from the transmitter side, our approach captures 
with high precision the noise profile of the photonic accelerator, 
that is dominated by laser RIN, PD shot noise and TIA thermal 
noise. The solid lines correspond to the accuracy levels 
obtained when executing MNIST classification entirely in the 
software domain, with the scatter points revealing the accuracy 
values obtained when the photonic layer is executed 
experimentally over the PNN. The first observation concerns 
the excellent matching between the experimentally obtained 
accuracy values depicted by the scattered rectangle points and 
the corresponding solid lines in both the noise-aware and 
baseline training models, validating the robustness of both the 
developed software framework and the effectiveness of the 
noise-aware model. The second observation regards the 
performance gains realized by the noise-aware model. 
Accuracy improvements are more pronounced as the noise level 
is increasing, reaching a performance gain of 5.93% when the 
AWGN has a standard deviation of 0.4. Performance gains are 
expected to be even more significant in case more NN layers 
are implemented in the photonic domain, since in that case the 
baseline model would concede to higher noise standard 
deviation values. It should be noted that the performance gains 
of the noise-aware model can be interpreted and exploited in 
two possible ways, opening new paths for future PNN 
implementations: (i) they can either translate to increased 
accuracy values when the baseline and the noise-aware models 
are executed assuming identical noise levels in both cases, or 
(ii) they can lead to relaxed power budget requirements for the 
same accuracy performance, allowing for lower PNN output 
optical powers and as such lower SNR values, which may form 
a critical advantage when amplifier-less integrated PNN 
solutions are employed. The latter has been also validated 

experimentally by increasing the noise standard deviation of the 
PNN circuit until the noise-aware model matches the accuracy 
obtained by the baseline model at the reference noise level with 
σ=0.4, indicating that a 4.7dB lower optical power can be 
utilized in this case.  

B. Channel-aware Training 

While non-deterministic noise sources can be approximated 
through AWGN, the Inter Symbol Interference (ISI) originating 
from the limited or non-linear channel response of the 
underlying photonic components necessitates an analytical 
mathematical model approximation. To this end, we developed 
a DL method that integrates a specially designed software 
building block in the NN training procedure, which allows for 
the inclusion of the PNN channel response in the NN training 
phase. Fig. 10 (a) illustrates the modified version of an NN, 
trained to classify the handwritten digits of the MNIST dataset, 
including the channel response modelling block in its photonic 
output layer. The data stream exiting the last hidden layer is 
converted to the frequency domain via Real Fast Fourier 
Transformation (RFFT) and gets then multiplied with an 
arbitrary channel response in the frequency domain. The 
resulting signal is then converted back to the time domain 
through an Inverse Real Fast Fourier Transformation (IRFFT). 
The PNN channel response was approximated by 
experimentally deriving the transfer function of the 4:1 Sipho 
PNN, which is illustrated in Fig. 10 (b) to follow a low-pass 
filtering response with a 3-dB bandwidth of approximately 
7.5 GHz, mainly dictated by the response of the MZM 
modulator. 

Fig. 10. (a) Modified photonic NN MNIST classifier, that incorporates the 
transfer function of the PNN in the training phase (b) Transfer function of the 
4-input SiPHO PNN. Experimental and expected traces at 20 Gbaud for the (c)
Baseline and (d) Bandwidth-aware (e) Accuracy results for both models at 20
and 25 Gbaud.  
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 Figures 10 (c), (d) depict the experimentally obtained (red 
curves) versus the NN expected (blue curves) time traces for 
both the baseline (Fig.10 (c)) and the channel-aware (Fig.10 
(d)) model at 20 Gbaud, with the baseline referring to the 
trained model without accounting for the channel response. It 
can be easily observed that the traces in the channel-aware 
model case follow much closer the respective expected 
waveform, revealing an error decrease between the received 
and the expected signals as we move from the baseline to the 
channel-aware model. This error decrease is quantitively 
analyzed in the reported accuracies values illustrated in 
Fig. 10 (e). The baseline model achieves experimental 
accuracies of 90.6% and 85.07% on the MNIST classification 
task at 20 and 25 GMAC/sec/axon, i.e., a degradation of 8.3% 
and 13.83% compared to the accuracy levels accomplished by 
the baseline model when executed entirely in the software 
domain. The software-derived accuracies for the channel 
response-aware scheme reached 98.6% and 98%, experiencing 
only a minor a degradation of only 0.3% and 0.9%, 
respectively, compared to the baseline software execution. The 
bandwidth-limit resilient character of the channel-response-
aware model was also experimentally validated at both compute 
rates, managing to sustain accuracy values of 98.51% & 
97.37% at 20 and 25 GMAC/sec/axon, respectively. This 
translates into 7.91% and 12.3% accuracy performance 
improvement over the corresponding experimentally executed 
baseline models. The experimental evaluation of the channel-
response-aware model was carried out by imprinting the data 
input values on the SiPho PNN and recording the resulting 
optical waveforms, with the rest of the NN functionalities 
including weighting, summation and activation performed in 
the software domain.  

V. CONCLUSION 

We have overviewed the state-of-the-art in experimentally 
deployed PNN demonstrations, validating that state-of-the-art 
coherent PNN layouts relying on unitary optical matrix 
implementation schemes have still not entered the GHz 
operational regime. Following a detailed analysis of the 
different noise contributions experienced by a photonic NN 
hardware platform, we have reviewed a robust photonic Xbar 
architecture [29] that can compensate hardware-induced errors 
in matrix-vector multiplication tasks, while NN accuracy errors 

originating by stochastic noise sources should be minimized 
through hardware-aware DL training models. We have 
demonstrated a 4:1 SiPho PNN chip prototype that realizes the 
first column of a 4:4 Xbar architecture, validating through 
respective MNIST and CIFAR-10 classification experiments its 
credentials to drive coherent neuromorphic layouts into the 5 
and 10 GHz operational line-rate regimes. In addition, we have 
introduced and experimentally validated the accuracy and speed 
performance gains enforced via noise-aware and channel-
response-aware DL training models. The overall progress 
sustained in the field of coherent PNNs by the combined use of 
a robust SiPho coherent PNN architecture and hardware-aware 
DL models can be schematically captured in Fig. 11, which 
provides a pictorial representation of the MAC/sec/axon 
compute rate versus accuracy metrics reported by coherent 
PNN demonstrations so far [8]-[10]. It clearly reveals that the 
experimentally obtained accuracy values accomplished so far 
by state-of-the-art coherent PNNs ranged only between 72% 
and 90.5%, with the operational compute rate per axon never 
exceeding 10 kHz. At the same time, the proposed silicon 
coherent neuromorphic platform equipped with hardware-
aware DL models allowed for the first time to penetrate the 
regime of >10GMAC/sec/axon compute rates while 
safeguarding >95% accuracy values, outperforming all state-of-
the-art coherent neurons by ~6 orders of magnitude in terms of 
per axon compute rates. This may open completely new 
perspectives for neuromorphic photonic circuit applications, 
allowing coherent silicon photonic layouts to migrate to high-
speed and high-accuracy inference settings that may be 
equipped with additional programmable or performance 
acceleration functions when combined with WDM capabilities 
[47]. This roadmap has to proceed along the lines of high-
density photonic-electronic co-integration, leveraging the latest 
advances in high-speed driver and TIA array co-packaging, 
towards a functional neuromorphic accelerator prototype 
[48],[49]. Finally, this may even support a reliable transition 
into the use of PNNs for training applications when utilizing 
high-speed electro-optic SiPho technology at both the input and 
the weighting stages [21]. 

ACKNOWLEDGMENTS 

 The authors would also like to thank Dr. Francesco Zanetto  
from Politecnico di Milano for wirebonding of the SiPho chip. 

 

 
 

Fig. 11. Reported performance of experimentally demonstrated coherent linear neuron engines in terms of line rate and classification accuracy.  
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