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This document contains supplementary material for the paper “Robust architecture-agnostic and noise resilient

training of photonic deep learning models”. First, we provide additional information regarding the physical character-

istics of the experimental setup used to evaluate the proposed method. Next, we report additional experiments, both

regarding the optical fiber communication setup, as well as using an additional convolutional neural network-based

setup.

I. PHYSICAL CHARACTERISTICS OF EXPERIMENTAL SETUP

In the paper, we evaluate the proposed method in two different photonic setups. The first setup, named Photonic

Recurrent Networks for Financial Time Series, employs a reccurent photonic network that is based on the photonic

neuron, presented in the Background section of the paper. Detailed description of the photonic configuration is

presented in the respective section in the paper. In Table I we also report some additional information on the physical

characteristics of the photonic neuron. The information reported in this table refers to the physical characteristics

of Mach-Zehnder Modulator (MZM), Photodetector (PD), Analog-to-Digital (ADC) and Digital-to-Analog (DAC)

conversion, and lasers.

In the second evaluation experiment, named Optical Fiber Communication, we employed the proposed method in

an IM/DD system which is trained in an end-to-end fashion as a single feed-forward ANN. The system is composed

of a neural transmitter, a channel and a neural receiver. The channel suffers from inter-symbol interference as a

result of the fiber dispersion. In Table II, we report the physical characteristics of the channel that combined with

the details reported in the paper, describing in detail the actual photonic hardware configuration that was taken into

account to evaluate the proposed method. The physical characteristics reported in this table refer to the fiber optics

setup, the MZM, and the applied Low Pass Filter (LPF).
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TABLE I

PHYSICAL CHARACTERISTICS OF THE PHOTONIC NEURON

Device IQ Modulator

Laser Pout 10 dBm

MZM - ER 5.9 dB

MZM - Data Rate 10 Gbaud

PD - Responsivity 0.5 A/W

DAC/ADC resolution 8 bits

Total loss budget 7dB

MZM Bias Voltage 0V

MZM Voltage Swing 5V

TABLE II

PHYSICAL CHARACTERISTICS OF THE FIBER CHANNEL

Oversampling 4

Bits per symbol 6

Sampling rate 336Gsa/s

LPF bandwidth 32GHz - Gaussian Filter, σ = 0.7

Fiber dispersion 18 ps/nm/km

Fiber attenuation 0.18 dB/km

MZM A(t) = sin(t)

Fiber dispersion D(z, ω) = exp j(β2/2)ω2z

Fiber length 30 to 70 km

II. OPTICAL FIBER COMMUNICATION EXPERIMENT

In Figure 1 we report results for the photonic sigmoid based architecture using the Xavier initialization, as well

as using the Xavier initialization combined with the proposed method for fiber lengths that are different from those

used in the training phase. As a result, the network is trained with a different amount of noise compared to the

noise experienced during inference. Therefore, these experiments investigate the effect of noise when the models

are evaluated in different conditions compared to those used during the training. It should be noted that even with

small changes in length (e.g., ± 1km) the system performance has significantly deteriorated. The evaluation results

also indicate that the proposed method leads to models that are more robust to noise, especially when noise with

similar characteristics is encountered during the inference, i.e., when the system is evaluated on fiber lengths close

to the trained one (< ±3km).
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Fig. 1. Comparing the Xavier initialization method and the proposed one for different transmission distances
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III. CONVOLUTIONAL NETWORKS FOR IMAGE CLASSIFICATION

We also conducted additional experiments to evaluate the effect of using the proposed method on larger con-

volutional architectures in order to examine the scalability of the proposed method. Therefore, we evaluated the

proposed method on two additional image datasets: FashionMNIST [1] and CIFAR10 [2]. The convolutional neural

network used is composed of 4 convolutional layers followed by 2 fully connected layers. More precisely, two

convolutional layers with 32 and 64 filters of size 3 × 3 followed by a 2 × 2 average pooling layer are used.

Next, another two convolutional layers are employed with 128 and 256 filters of size 3 × 3 and a final 2 × 2

average pooling layer. Then, the extracted feature map is flattened and fed to a hidden layer with 512 neurons,

before forwarding it to the final classification layer. This led to a network with about 2.5 million parameters for

the FashionMNIST dataset and 3.7 million parameters for the CIFAR10 dataset. Optimization was carried out for

50 epochs with a learning rate of η = 10−4 using Adam optimizer, while the networks were further fine-tuned for

another 50 epochs with a reduced learning rate of η = 10−5. The proposed initialization method ran for Ninit = 5

epochs with the initial learning rate set to η = 0.1. Four different initialization approaches were evaluated: a) Xavier

initialization, b) Xavier initialization along with proposed method, c) He initialization and d) He initialization along

with proposed method. Three different activation functions were used for the conducted experiments: a) (regular)

sigmoid, b) photonic sigmoid, and c) photonic sinusoidal. Additionally, we evaluated the methods on different noise

levels that were applied on weights and inputs of every layer. All models were trained with AGWN noise drawn

from N (0, σ2), where σ ranges from 0 to 0.2.

The training accuracy after the training process is reported for the different initialization schemes and noise levels

on the FashionMNIST and CIFAR10 datasets in Tables III and IV, respectively. On the FashionMNIST dataset we

observe that the proposed method results in a stable performance for all different activation functions, in contrast to

traditional initialization methods that are significantly deteriorated on the cases of sigmoid and photonic sigmoid.

This is more clear in the CIFAR10 dataset where the performance of traditional initialization methods collapses in

those cases. Indeed, we observed that in most of the cases the training process halted and it could not progress

even after 100 epochs of training. Additionally, even in cases for which the traditional methods achieve acceptable

performance, e.g., photonic sinusoidal activation, the training accuracy again collapses when higher noise levels are

applied. On the other hand, the proposed method outperforms all the traditional initialization schemes, regardless

of the used initialization scheme and/or level of noise. These experimental results confirm the scalability of the

proposed method, enabling us to employ it in deep, easily saturated, and noisy architectures. Note that even though

these networks are beyond the current capacity of existing neuromorphic hardware, the architecture employed holds

the credentials of being integrated into a single photonic chip by utilizing components and circuits already offered

by CMOS-compatible Photonic Integrated Circuit (PIC) technology, allowing one to implement significantly larger

networks [3].
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TABLE III

FASHIONMNIST - CLASSIFICATION ERROR (%) FOR DIFFERENT ACTIVATION FUNCTIONS AND NOISE LEVELS

Activation

Function
Initialization

Noise Level

0.0 0.05 0.1 0.2

Sigmoid

Xavier 90.0 58.46 89.65 90.08

+ Proposed 8.74 9.11 11.14 15.29

He 13.67 14.09 15.42 18.66

+ Proposed 8.81 10.26 12.37 16.18

Photonic

Sigmoid

Xavier 17.88 23.31 29.36 89.57

+ Proposed 8.63 12.4 19.21 25.16

He 19.17 23.45 28.29 29.23

+ Proposed 9.06 12.81 21.53 26.73

Photonic

Sinusoidal

Xavier 8.04 9.4 11.85 28.83

+ Proposed 7.65 8.82 10.48 16.75

He 9.16 10.22 14.51 24.38

+ Proposed 8.62 9.54 12.0 16.03

TABLE IV

CIFAR10 - CLASSIFICATION ERROR (%) FOR DIFFERENT ACTIVATION FUNCTIONS AND NOISE LEVELS

Activation

Function
Initialization

Noise Level

0.0 0.05 0.1 0.2

Sigmoid

Xavier 90.0 89.97 89.53 90.03

+ Proposed 20.54 25.93 25.75 35.64

He 90.0 90.63 89.98 90.43

+ Proposed 23.81 25.33 32.21 42.45

Photonic

Sigmoid

Xavier 90.0 89.77 89.9 90.33

+ Proposed 20.52 29.4 37.33 56.01

He 74.17 89.54 90.14 90.0

+ Proposed 25.18 28.23 39.94 89.82

Photonic

Sinusoidal

Xavier 18.62 21.06 28.2 74.23

+ Proposed 16.36 19.47 24.97 41.55

He 52.28 43.92 56.3 90.3

+ Proposed 21.67 21.74 28.47 48.85
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	Physical Characteristics of Experimental Setup
	Optical Fiber Communication Experiment
	Convolutional Networks for Image Classification
	References

