
1

Training Deep Photonic Convolutional Neural
Networks with Sinusoidal Activations

Nikolaos Passalis, George Mourgias-Alexandris, Apostolos Tsakyridis, Nikos Pleros and Anastasios Tefas

Abstract—Deep Learning (DL) has achieved state-of-the-art
performance in many challenging problems. However, DL re-
quires powerful hardware both for training and deployment,
increasing the cost and energy requirements and rendering
large-scale applications especially difficult. Recognizing these
difficulties, several neuromorphic hardware solutions have been
proposed, including photonic hardware that can process informa-
tion near to the speed of light and can benefit from the enormous
bandwidth available on photonic systems. However, the effect of
using these photonic-based neuromorphic architectures, which
impose additional constraints that are not usually considered
when training deep learning models, is not yet fully understood
and studied. The main contribution of this work is an extensive
study on the feasibility of training deep neural networks that
can be deployed on photonic hardware that employ sinusoidal
activation elements, along with the development of methods
that allow for successfully training these networks, while taking
into account the physical limitations of the employed hardware.
Different deep learning architectures and four datasets of varying
complexity were used for extensively evaluating the proposed
method.

I. INTRODUCTION

Deep Learning (DL) has revolutionized machine learning
providing state-of-the-art solutions to several difficult prob-
lems [1], ranging from computer vision to natural language
processing. DL models are composed of several “processing”
layers that extract increasingly complex features. It has been
demonstrated that increasing the depth of a model usually
positively impacts its accuracy, given that the model is ap-
propriately designed and regularized, leading to an enormous
increase in the complexity of DL models. For example, while
early DL models were restricted to 10-20 layers, recently
proposed state-of-the-art models have more than 1,000 lay-
ers [2]. However, training DL models require powerful and
specialized hardware. In fact, much of the progress in deep
learning has been fueled by the development of specialized
and powerful hardware for this task [1]. Apart from training
DL models, the inference speed and computational/energy
requirements are even more important, since the successful
large-scale deployment of DL models critically relies on them.

Several neuromorphic hardware solutions have been pro-
posed to overcome the aforementioned limitations [3], [4],
[5], [6], [7], [8], [9]. Neuromorphic hardware provides several

N. Passalis and A. Tefas are with the Artificial Intelligence and Informa-
tion Analysis Laboratory, Aristotle University of Thessaloniki, Greece. G.
Mourgias-Alexandris, A. Tsakyridis, and N. Pleros are with the Photonic
Systems and Networks Research Group, Aristotle University of Thessaloniki,
Greece. Nikolaos Passalis is now with the Faculty of Information Technology
and Communication Sciences, Tampere University, Finland. E-mails:{passalis,
mourgias, atsakyrid, npleros, tefas}@csd.auth.gr

advantages by lowering the energy requirements of deploying
neural networks and improving the inference speed. Even
though these solutions are not yet widely used, they hold
the credentials for replacing the currently predominantly used
generic hardware accelerators, such as GPUs and Tensor Pro-
cessing Units (TPUs) [10]. Perhaps among the most promising
solutions for providing hardware implementations of deep
neural networks is using photonics [11]. This allows for
overcoming many of the limitations of the currently used
generic hardware accelerators by replacing the electronic-
based information processing components with optical ones.
This allows for having photonic-based neuromorphic archi-
tectures that can either be used to implement spiking neural
networks or to accelerate the inference for traditional artificial
neural networks. In this paper we study the use of photonic
hardware for the latter, since deep artificial neural networks
currently exhibit state-of-the-art performance.

In photonic-based neuromorphic architectures optical sig-
nals are used to represent the input to a neural network. This
optical signal is then manipulated and processed using the
appropriate components, providing in this way the function-
ality of neurons. This allows the signal to propagate near to
the speed of light and the neurons to operate at extremely
high frequencies, while the enormous bandwidth of optical
components provide a great potential for parallelizing various
tasks. These provides significant advantages over the currently
used solutions, often outperforming them by several order
of magnitude [11]. It is worth noting that very efficient and
fast processing engines have been already demonstrated in the
context of reservoir computing [12], along with optical deep
neural networks [13]. Also, quite recently, Photonic Integrated
Circuits (PICs) have been employed for implementing inte-
grated weighting banks, allowing for moving towards fully
integrated photonic neural network that employ sinusoidal
activation elements [14].

Even though neuromorphic hardware can provide signif-
icant performance benefits, i.e., improve the speed, power,
and energy consumption, it always comes with additional
limitations and constraints over artificial neural networks that
will be simulated, i.e., deployed on general purpose hardware,
instead of being actually implemented on hardware, e.g., [15],
[16]. For these neuromorphic architectures there is no generic
training approach, since each architecture exhibits its own
particularities [15], [16], [17], [18], [19], [20]. Therefore, the
training algorithms must be carefully adapted to the needs
of each application, ensuring that a) the transfer functions
of the various components is appropriately modeled, b) the
trained network behaves correctly and stays within the im-

2

posed hardware limits (weights, activations, etc.) and c) the
various sources of noise are taken into account during the
training process.

Similar constraints also exist for photonic-based neuromor-
phic architectures. For example, the activation functions that
are usually used in DL, e.g., ReLU [21], cannot be directly
implemented in photonic-based neuromorphic hardware [14],
[22], [23]. To provide the functionality of non-linear activation
functions several combinations of photonic and electronic
components have been proposed in the literature. For example,
in [14], a Mach-Zehnder Modulator (MZM) [24] is used in
order to appropriately modulate an optical signal based on the
output of a neuron, leading to the following transfer function:

Pout = Pin sin
2(
π

2

VRF
Vπ

), (1)

where Pout is the output signal, Pin is the Continuous Wave
(CW) signal to be modulated, Vπ is the voltage needed for
achieving a π phase shift and VRF is the input to the activation
function. In this paper, we also consider this activation config-
uration. It is also worth noting that this method requires using
balanced photodetectors in order to convert the optical signal
(output of a neuron) to an electrical signal. This signal is then
employed to modulate a reference optical signal, while a diode
is used at the output of balanced layout for ignoring negative
voltage signals. This configuration can operate at high fre-
quencies, despite using electronic components, due to the use
of Germanium-based photodetectors [25] and the significant
progress witnessed in high speed RF modulator driver [26]
and Transimpedance Amplifier (TIA) IC circuits [27].

Apart from the previous problem, additional training diffi-
culties arise when non-linear activation functions, such as the
sigmoid function, are used, since the training process can slow
down (or even completely halt), due to several phenomena,
such as vanishing of the input and/or back-propagated sig-
nals [21]. Furthermore, note the periodic and highly non-linear
behavior of the activation function described in (1), which sig-
nificantly differs from the traditional activation functions that
are usually employed in DL. Neurons that are implemented
in photonic hardware also come with additional constraints.
The response of neurons must be bounded, since physical
systems work within a specific power range. Also, the effect
of various noise sources must be taken into account and the
transfer function of the various components of the system must
be accurately modeled to ensure that the implemented neural
network will behave as expected. Note that the aforementioned
limitations arise only with neuromorphic implementations,
since software (simulation-based) implementations ensure that
the network will always work in a noise-free environment,
while the precision of floating point numbers is usually more
than enough for representing the weights/activations of neural
networks, ensuring that the network will always behave as it
was designed.

The main contributions of this work are the following:
a) An appropriate initialization scheme is derived based on
the transfer function of the photonic configuration used to
implement the activation function in the employed neuromor-
phic architecture. This initialization scheme ensures that the

input signals will not diminish and the training process will
proceed smoothly. b) A regularization method, which ensures
that the activations of the network will remain within the
working range of the used hardware, is also proposed. The
same approach can be additionally used to control the range
of the weights of the network, if such constraints are also
imposed by the hardware. c) The effect of different types of
noise on the training and inference process is studied and it is
demonstrated that it is possible to train robust photonic neural
networks that can withstand significant amounts of noise, if the
characteristics of the noise are known beforehand and taken
into account during the training process. d) Finally, the effec-
tiveness of the proposed approach is experimentally verified
using a wide range of different configurations, networks and
datasets.

The rest of this paper is structured as follows. First, the
related work is briefly discussed in Section II, while an
introduction to neural networks and the employed photonic-
based neuromorphic architecture is provided in Section III.
Then, the limitations imposed by photonic hardware are intro-
duced in Section IV and the proposed methods for training
deep neural networks on such hardware are derived. Next,
the effect of various parameters, design choices and methods
on training neural networks that are to be implemented on
photonic hardware are extensively evaluated in Section V,
while conclusions are drawn in Section VI.

II. RELATED WORK

This work is related to training neural networks for neu-
romorphic hardware [15], [16], [17], [18], [19], [28], [29],
[30], [31]. Note that the term neuromorphic is not consistently
used in the literature. In this work, the term neuromorphic is
used to refer to dedicated hardware architectures that directly
implement the functionality of neurons, usually by employing
analog circuits and/or devices.

There is no generic approach for training networks for
neuromorphic hardware, since each neuromorphic architecture
exhibits its own particularities that need to be considered
when designing the corresponding networks. For example,
in [17], the behavior of metal-oxide memristors, e.g., their
large variability due to the manufacturing processes that are
currently used, is considered for designing networks that can
be trained in situ, i.e., using the actual neuromorphic hardware
for the training process, while a similar approach for ex-
situ training, i.e., training using external hardware and then
programming the neuromorphic hardware, which is also the
approach followed in this paper, is presented in [15]. The
use of quantum computers and high-performance low-power
memristive hardware is also examined in [19]. A way of map-
ping convolutional neural networks (CNN) to neuromorphic
chips, such as the TrueNorth, is presented in [18], while the
use of hardware that only supports spiking neural network
architectures is thoroughly considered in [16]. To the best of
our knowledge this is the first in-depth study on the feasibility
of training deep neural networks for photonic hardware that
employ sinusoidal activations [14], while taking into account
the constraints imposed by the hardware.

3

M
U

X
Vsign(W)9

(l)

V|W |1

(1)

..
.

λ1(+)λ1(-)

M
O

D

Neuron’s Output

MOD

MOD

MOD

Optical

Electrical

sign of W
(1)

Input X
(1)

Weight |W
(1)

|

λ1(+)

λ1(-)

λ2(+)

λ2(-)

λ9(+)

λ9(-)

A MZI-

Vsign(W)2

(l)

Vsign(W)1

(1)
VX1

(1)

VX2

(l)

VX9

(l)

V|W |2

(l)

V|W |9

(l)

Vsign(W)1

(2)

VX1

(2)

Fig. 1: Photonic layout implementing a single neu-
ron/convolutional filter

The weight regularization approaches proposed in this paper
have been also examined previously in various occasions [32],
[33], [34], but in a different context. Most of the existing reg-
ularization methods, such as dropout [35], aim to reduce over-
fitting phenomena that occur during the training process, and,
as a result, achieve better generalization. On the other hand,
the methods proposed and evaluated using simulations in this
paper have a completely different purpose: they aim to impose
the constraints dictated by the neuromorphic hardware used for
deploying the network. Employing noise during the training
process is also related to various regularization and denoising
methods, i.e., denoising autoencoders [36]. However, again the
motivation in this work is different: instead of trying to avoid
over-fitting or make the network more robust to noisy input
signals, the network must be trained to withstand noise in all
of each layers. This noise does not originate from the input
signal, but it is an intrinsic characteristic of the hardware that
is used for its implementation.

III. NEURAL NETWORKS AND PHOTONIC HARDWARE

A neuron, which is the building block of a neural network,
receives its input, denoted by a vector x(l) ∈ Rnl , where
nl denotes the input dimensionality. Note that the input of
the neural network may be directly given to the neuron, i.e.,
the neuron receives the raw data, or the processed output
of another layer of neurons can be used as input. The layer
from which the neuron receives the data is denoted by “(l)”.
Therefore, the input data are denoted by x(0), while for each
succeeding layer the input is denoted by x(1),x(2),x(3),
Then, the weights w

(l)
i ∈ Rnl−1 are multiplied with the input

and summed together. The activation vector ul ∈ Rnl for the
l-th layer is compiled as:

u(l) = W(l)x(l−1) + b(l) ∈ Rnl , (2)

where nl denotes the number of neurons in this layer, W(l) =

[w
(l)
1 ,w

(l)
2 , . . . ,w

(l)
nl] ∈ Rnl×nl−1 denotes the matrix with the

weights for the l-th layer and b ∈ Rnl denotes the bias vectors
for the corresponding layer. Then, the output for each neuron

is calculated by passing the activation through a non-linearity
f(·):

x(l) = f(u(l)) ∈ Rnl . (3)

Note that the term “output” and “activation” are not used con-
sistently in the literature. In this paper, the term output refers
to the final output of a neuron after applying the activation
function f(·), while the term activation refers to the quantity
u(l), i.e., the neuron’s output before applying the activation
function. Multiple layers of neurons can be stacked together
to form deep neural networks. Also, note that other types of
layers apply the weights in different ways, e.g., convolutional
layers [2]. Neural networks are usually trained using the back-
propagation algorithm [33], which optimizes the parameters
of the network toward minimizing a loss function L, which
measures how well the network fits the task at hand.

Figure 1 depicts the photonic layout for a single neuron
of the employed architecture that can be used either for
implementing dense layers or convolutional filters. For each
of the 9 separate inputs, 2 different lasers emitting at different
wavelengths λi(+) and λi(-) are employed to represent positive
and negative numbers and are injected as input CW signals
into a 2× 2 Mach-Zehnder Interferometer (MZI) switch. The
role of this 2 × 2 MZI switch is to correspond the sign of
weight with a laser at specific wavelength and can either rely
on an electro-optic or thermo-optic switching effect: whenever
a negative weight value is employed, a zero voltage-level is
applied at the MZI forcing the MZI to operate in its “Cross”-
state, so that the λi(-) and the λi(+) CW signals emerge at the
upper and the lower output ports of the switch, respectively.
In case a positive weight value has to be used, then a Vπ
voltage gets applied at the MZI switch, discarding the λi(-). The
λi(+) signal will exit the switch through its upper output port
and will get forwarded to the electro-optic modulation stage
of every neuron. After exiting the MZI switch, the selected
laser beam is injected into an electro-optic Mach-Zehnder
Modulator (MZM), driven by the proper V

X
(1)
i

electrical input

signal, imprinting in this way the input (X(1)
i) onto an optical

signal with proportional power P
X

(1)
i

. This signal enters then a
Variable Optical Attenuator (VOA) that can be realized again
by means of an electro-optic or thermo-optic MZI switch
driven by an electrical signal, having the role of realizing the
|W (1)

i | by attenuating properly the signal P
X

(1)
i

, as a result

the signal W (1)
i · P

X
(1)
i

. At this point, it is worth to mention
that the MZIs which are responsible for realizing the P

X
(1)
i

and the |W (1)
i | have been operated at the linear region of

their sinusoidal transfer function in order to translate precisely
the numerical value of X(1)

i and |W (1)
i | to the corresponding

optical power. Following the weighting stage, all 9 signals are
combined into a single waveguide via an optical multiplexer
(MUX), while the following Asymmetric MZI (A-MZI) is
employed for separating the positive- and negative-weighted
signals, forwarding to upper port and lower port of A-MZI
all the wavelengths that carry positive- and negative-weighted
signals, respectively. Afterwards, at the input of upper photo-
diode occurs the summation of positive-weighted signals and
at the lower photodiode the summation of negative weighted

4

signals. The expression below describes how the optical power
of positive- and negative-weighted signals is summed at the
input of the corresponding photodiode (pd):

Ppd(+|−)−input =

n∑
i=1

W
(l)
i · PX(l)

i (+|−) (4)

The balanced topology of 2 photodiodes allows for the sub-
traction of positive- and negative-weighted signals, while the
diode at the output of this circuit discards the negative voltages
V
X

(2)
i

. Using this signal to drive a MZM where 2 CWs at
λi(+) and λi(-) are injected to the input, at the output of MZM
will occur the output of the photonic activation unit. Now the
MZM is operated with V

X
(2)
i

voltages that cause π
2 phase-

shift, utilizing the non-linear region of its transfer function.
The transfer function of the photonic activation unit depicted
in Fig. 1 can be now described, by employing the transfer
function of MZM described in (1), as:

(5)Pactiv−out =


0, if V

X
(l)
i

≤ 0

Pλi(+|−) · sin2

(
π
2

V
X

(l)
i

Vπ

)
, if V

X
(l)
i

> 0
,

This topology allows for every neuron to produce an output
signal that is used as input for the subsequent optical neuron.
It is worth noting this architecture holds the credentials of
getting integrated onto a single photonic chip by utilizing
components and circuits already offered by CMOS-compatible
silicon Photonic Integrated Circuit (PIC) technology.

IV. TRAINING DEEP PHOTONIC NEURAL NETWORKS

The proposed methods for training deep neural networks
for neuromorphic photonic hardware are analytically derived
in this Section, after considering the limitation imposed by
the employed photonic hardware. The simplest case will be
considered for the scope of the analysis, i.e., a fully connected
neuron. This is without loss of generality, since it is trivial to
extend the obtained results and methods for other types of
layers as well, as demonstrated in Section V.

A. Neural Networks and Photonic Hardware

Photonic hardware can be used to implement the mul-
tiplication between the input and the weights, along with
the summation that leads to the activation of the neurons
u(l), as discussed in Section III. However, note that in a
physical system there are restrictions regarding the scale
of the activations, since there are power/energy constraints
that cannot be exceeded. This behavior is simulated in the
conducted experiments by using a hard cut-off threshold on
the activations:

u(l) = min(max(u(l),−umax), umax), (6)

where umax is the maximum absolute activation value
supported by the hardware and the max(·) and min(·)
functions are applied element-wise. Similarly, one can
also constraint the weights of the network as W(l) =
min(max(W(l),−wmax), wmax), where wmax is the absolute
maximum value for the weights that is supported by the
hardware.

Then, the activations must be fed to a non-linear device
that acts as the activation function of the network. As already
discussed in Section III, the layout proposed in [14] along with
a diode is used in this work, i.e., a modulator controlled by the
output current of a photodetector-based circuit is employed to
provide the functionality of a non-linear activation function.
The transfer function of the employed photonic activation can
be simplified as:

(7)f(u) =

{
0, if u ≤ 0

sin2(π2u), if u > 0
,

after taking into account the physical limitations of the in-
volved components and that the activation u can be easily
scaled accordingly before implementing the network (accord-
ing to the voltage Vπ required to have a phase shift of π that
corresponds to optimal modulation in optical interferometric-
based modulators). As also discussed in the relevant litera-
ture [37], [31], employing an activation scheme adapted to
the actual transfer function of the device at hand is of crucial
importance to avoid vanishing gradient phenomena and ensure
the smooth training of deep neural networks.

Furthermore, different types of noise exist in a real hardware
implementation. The proposed neuromorphic photonic layout
is based on a photonic component portfolio, including laser
sources, waveguides, modulators, Mach-Zehnder interferome-
ters, multiplexers and photodiodes, which has been extensively
studied in optical communication systems by employing the
Additive White Gaussian Noise (AWGN) model [38]. Follow-
ing these findings, we also employ a Gaussian noise source
to model the noise that exists in hardware implementations.
Therefore, during the testing, an AWGN source is used to
stochastically corrupt the activations as ũ(l) = u(l)+N (0, σ2),
where N (µ, σ2) is a normal distribution with mean µ and
standard deviation σ.

B. Initialization Scheme for Sinusoidal Activation Functions
In this Section, the characteristics of the initialization pro-

cess are derived by requiring the variance of the input signals
to kept constant thought the various layers of the networks.
This will allow the information to arrive to the employed loss
function, as well as ensures the smooth flow of gradients [37],
[31].

The notation w (l) is used to denote the random variable
used for initializing the weights of the l-th layer, while the
notation u(l) and x (l) is employed to refer to the random
variables that correspond to the outputs u

(l)
i and x

(l)
i of the l-

th layer. The elements of W(l) share the same distribution,
are mutually independent and must have zero mean, i.e.,
E[w (l)] = 0 ∀ l. Furthermore, the variables w (l) and x (l)

are assumed to be independent, while the elements in x(l)

to be mutually independent and drawn from x (l). A first-
order Taylor expansion around u0 is used to approximate the
behavior of the employed function in order to simplify the
analysis. Therefore, the following function will be used for
the rest of the conducted analysis:

(8)f̂(u) =

{
c1(u− u0) + c0, if u > 0

0, if u ≤ 0
.

5

where c1 = f ′(u0) = 1
2π sin(πu0) and c0 = f(u0) =

sin2(12u0). The feed-forward case will be examined. The
variance of the output of the l-th layer is calculated as:

(9)

V ar[u(l)] = V ar[u
(l)
k]

= V ar[

nl−1∑
i=1

W
(l)
ki x

(l−1)
i]

=

nl−1∑
i=1

V ar[w (l)]E[(x
(l−1)
i)2].

By initializing the bias terms to 0 and assuming that w (l)

is symmetric around zero, then it can be easily derived that
E[u(l)] = 0, as well as that u(l) is also symmetric around
zero. Also, note that the activation function maps half of its
values to 0. Then, E[(x

(l−1)
i)2] can be calculated as:

(10)
E[(x

(l−1)
i)2] =

1

2
c21E[(u

(l−1)
i)2]

=
1

2
c21V ar[u

(l−1)],

by employing the approximation given in (8) for the other half.
Therefore, the variance for the activations of the l-th layer is
calculated as:

(11)

V ar[u(l)] =
1

2
c21

nl−1∑
i=1

V ar[w (l)]V ar[u(l−1)]

=
c21
2
nl−1V ar[w

(l)]V ar[u(l−1)]

= V ar[x (0)]

l−1∏
i=1

c21
2
ni−1V ar[w

(i)],

by plugging (10) into (9). Recall that x(0) denotes the neural
network’s input and n0 is the input dimensionality. Therefore,
the product that appears in (11) must be equal to 1. This
ensures that the variance will be kept constant across the
layers. Therefore, the variance of the distribution used for
initializing the weights of the l-th layer should be:

(12)V ar[w (i)] =
2

c21ni−1
,

to ensure that the variance will be kept constant.
If a normal distribution is used for initializing the i-th

layer, then its standard deviation should be set to σ =√
V ar[w (i)] = 1

σ1

√
2

ni−1
, by employing the target variance

V ar[w (i)] calculated in (12). If a uniform distribution is used,
then the weights should be sampled from the interval [−α, α],
where α =

√
3V ar[w (i)] = 1

σ1

√
6

ni−1
, since V ar[x] = 1

3α
2

for x drawn uniformly from [−α, α].
The variance of the back-propagated signals can be similarly

derived. However, as proposed in [39], either of them can be
used interchangeably in most of the cases. Furthermore, note it
is straightforward to adapt the proposed initialization scheme
to other types of layers, e.g., convolutional layers, by correctly
setting ni−1 to the fan-in of each neuron [39].

C. Hardware-guided Neural Network Regularization

Apart from the initialization, there are also several other
constraints that arise from the use of photonic hardware, as
discussed in Section IV-A. First, the activations of the neurons
must be restricted into a pre-determined range. To achieve this,
an activation regularizer is employed in this work:

La =

L∑
l=1

||max(0, |u(l)|−umax)||22, (13)

where ||x||2 is the l2 norm of a vector x and umax is the
maximum absolute value that a neuron can output. It is easy
to verify that this regularizer penalizes the network whenever
the activation of a neuron is out of the working range of the
hardware. In this way, the weights of the networks are modified
to avoid producing large activation values. Alternatively, l1

regularization, which also encourages more sparse solutions,
can be also employed. The interested reader is referred to [32]
for a more in depth comparison between these two approaches.
The weights of the network can be regularized similarly using
the same approach:

Lw =

L∑
l=1

||max(0, |W(l)|−wmax)||2F , (14)

where the maximum function is applied element wise and
||W||F denotes the Frobenius norm of matrix W. Note the
close relationship of (14) to the well-known l2 regulariza-
tion [33], which is used to regularize various machine learning
models and avoid over-fitting. Therefore, the following loss
function is employed for training the networks:

L = Lclass + αaLa + αwLw, (15)

where αa is the weight of the activation regularizer, αw is the
weight of the weight regularizer and Lclass is the classification
loss used for the training, typically the cross-entropy loss [33].

Finally, to make the trained networks more robust to noise,
the same noise that exists in the hardware device (simulation
in the conducted experiments) was also added to the activation.
For example, for AWGN the activations are calculated as:

ũ(l) = u(l) +N (0, σ2), (16)

where σ is the standard deviation of the noise used for the
training. Similarly, different types of noise can be considered,
if the characteristics of the noise are known beforehand.
Note that the proposed approaches are orthogonal to other
regularization techniques, such as dropout [35], which aim to
reduce over-fitting instead of ensuring that the trained network
will stay within the specifications of the employed photonic
hardware. Of course, the proposed method can be readily com-
bined with these regularization methods and further improve
the performance of the trained networks, as also demonstrated
in the conducted experiments.

V. EXPERIMENTAL EVALUATION

Experimental Setup: Four different datasets are used in
this paper: three image dataset, the MNIST dataset [40], the
Fashion MNIST dataset [41] and the CIFAR10 dataset [42], as

6

0 20 40 60 80 100

iteration (×10)

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

av
er

ag
e

lo
ss

SGD with momentum

Xavier (uniform)
Proposed (uniform)
Xavier (normal)
Proposed (normal)

0 20 40 60 80 100

iteration (×10)

0.0005

0.0010

0.0015

0.0020

0.0025

0.0030

av
er

ag
e

lo
ss

Adam

Xavier (uniform)
Proposed (uniform)
Xavier (normal)
Proposed (normal)

Fig. 2: Learning curves for two different initialization schemes
(Xavier [37] and proposed), two different random distributions
(uniform and normal) and two different optimizers (SGD with
momentum and Adam).

well as a high frequency limit order book dataset that contains
more than 4 million limit order event, the FI-2010 dataset [43],
[44]. The MNIST and the Fashion MNIST datasets were
normalized to the range 0...1, while the CIFAR-10 and the
FI-2010 dataset were normalized using z-score normalization,
i.e., to have zero mean and unit variance.

Three different deep learning convolutional architectures
were used: a) a 4-layer 2D convolutional network and b)
a 6-layer 2D convolutional network and c) a 3 layer 1D
convolutional neural network. The first network (abbreviated
as “CNN-1”) is composed of two convolutional layers (3× 3
kernels) with 32 and 64 filters, followed by two fully con-
nected layers with 512 and 10 neurons respectively. Before
and after the first fully connected layer dropout (p = 0.5)
is used. Average pooling with kernel size 2 × 2 is used
after each convolutional layer (note that currently there is
no method proposed in the literature for implementing max
pooling in photonic networks). The second network, abbre-
viated as “CNN-2”, follows a similar architecture, i.e., four
convolutional layers with 32, 64, 128 and 256 filters (average
pooling is used after the second and the fourth layers) are used,
while the fully connected layer is composed of 1024 neurons.
Again, dropout is used before and after the first fully connected
layer. The CNN-3 network is composed of a 1D convolutional
layer with 64 filters, followed by two fully connected layers
with 512 and 3 neurons respectively. The same architectures
were used for all the experiments regardless the employed
activation function and/or initialization scheme to ensure a fair
comparison between the evaluated methods. Furthermore, all
the models were implemented using the PyTorch library (more
details regarding each experiment, e.g., optimizer, learning
rate, etc., are given in the corresponding section), while they
were trained using a mid-range GPU accelerator.

The cross entropy loss, together with the softmax activation
function, is used for training the networks. Note that if we are
interested solely in predicting the most probable class, then
the softmax function can be removed during the deployment,
since the softmax function does not alter the relative ordering
between the predictions. Unless otherwise stated, the networks
were initialized using a uniform distribution. Finally, u0 was
set to 1

4 for all the conducted experiments, since this value
consistently yielded the best results.
Initialization Scheme Evaluation: First, the proposed initial-

ization scheme (called “Photonic Sinusoidal Initialization” -
PSI - in the rest of this paper) is compared to the well-known
Xavier initialization (as proposed in [37]) in Fig. 2. Stochastic
gradient descent (the learning rate was set to η = 0.1)
with momentum of 0.9 was used for these experiments. The
baseline “ReLU” model refers to using the CNN-1 network
with the ReLU activation and the appropriate initialization
scheme [39], while the “Photonic + Xavier” and “Photonic +
PSI” refers to using the CNN-1 network with the Xavier and
the proposed initialization approach respectively. PSI leads to
significantly faster convergence than the Xavier initialization
regardless the distribution used for drawing the weights and the
employed optimizer (SGD or Adam [45]). Then, the improved
behavior of PSI was also confirmed in the experimental
results provided in Table I using the MNIST dataset and the
CNN-1 architecture. Three different optimizers were employed
for the evaluation: SGD with momentum, RMSProp [46]
and Adam [45]. The proposed combination of the employed
photonic activation and initialization scheme improves the
performance over using the Xavier initialization regardless the
used optimizer. The Adam optimizer led to the best results
and, as a result, is employed for the rest of the conducted
experiments. Also, note that the photonic activation also leads
to slightly improved performance over the baseline network
with the ReLU function. This can possibly attributed to the
non-linear behavior of the photonic function for positive values
compared to the linear behavior of the ReLU function (for the
same range), which can be especially beneficial for smaller
networks. However, at the same time, this non-linear behavior
can also cause vanishing gradients, depending on the used
network and dataset, as discussed earlier.

Similar conclusions can be also drawn from the experiments
conducted using the Fashion MNIST dataset, reported in
Table II, where the proposed initialization scheme also always
improves both the training and testing error over the Xavier
initilization. Note that the first model (CNN-1) was under-
fitting the data, while the second one (CNN-2) was more
powerful leading to better performance. To evaluate the ability
of the proposed method to train deeper architectures, we
also conducted an additional experiment using an architecture
based on the ResNet-18 model (as described in Table II).
The effect of PSI is even more obvious in this case, since it
was not possible to successfully train this architecture without
using the proposed initialization method, despite employing a
state-of-the-art optimization method (Adam [45]). Note that
even though the ResNet model is successfully trained using
PSI, it achieves lower accuracy compared to the other CNN
architectures. This highlights the need for models that are
specifically designed for the needs of photonic neuromorphic
hardware, which often exhibits different characteristics than
general purpose accelerators.
Hardware-guided Regularization Evaluation: First, the ef-
fect of using the activation regularizer was examined. The
activations of the network were clipped to −1 . . . 1. The
experimental results are reported in Table III, while the net-
works were trained for 20 epochs. Different choices for the
activation regularizer hyper-parameter αa and regularizer (l1

or l2) were evaluated. It is clearly demonstrated that using

7

TABLE I: Evaluation on the MNIST dataset

Model Optimizer Train error (%) Test error (%)

ReLU SGD 0.78 1.00
Photonic + Xavier SGD 0.81 1.04
Photonic + PSI SGD 0.68 0.99

ReLU RMSProp 0.54 0.89

Photonic + Xavier RMSProp 0.72 1.02
Photonic + PSI RMSProp 0.39 0.98

ReLU Adam 0.49 0.79

Photonic + Xavier Adam 0.59 1.00
Photonic + PSI Adam 0.37 0.78

The optimization ran for 10 epochs (learning rate set to 0.01 for SGD and
0.001 for RMSProp and Adam) with batch size of 128.

TABLE II: Evaluation on the Fashion MNIST dataset

Model Network Train error (%) Test error(%)

ReLU CNN-1 10.61 10.28

Photonic + Xavier CNN-1 12.62 12.28
Photonic + PSI CNN-1 11.84 11.71

ReLU CNN-2 5.62 6.56

Photonic + Xavier CNN-2 6.83 7.44
Photonic + PSI CNN-2 6.12 7.11

Photonic + Xavier ResNet* 90.00 90.00
Photonic + PSI ResNet* 15.27 14.48

The optimization ran for 20 iterations (learning rate set to 0.001) with batch
size of 128, followed by 20 additional iterations (learning rate set to 0.0001).
ResNet* refers to a variant of the ResNet-18 model [2] that was adapted to
the task at hand after removing the Batch Normalization layers and the last
residual block.

activation regularization, which takes into account the limita-
tions of the hardware used to deploy the network, improves
the accuracy of network since the error drops from 4.97%,
when no regularization is used, to 0.62 (l1 regularization) and
0.67% (l2 regularization) when the proposed regularization
approach is employed. Both regularization approaches (l1

and l2) work equally well, given that the weight of the
regularizer αα is appropriately tuned. For all the networks,
the activations were restricted to the range supported by the
hardware during the evaluation. For the regularized networks,
the weights were also restricted to the range supported by the
network during the training. The effect of using regularization
is also demonstrated in Fig. 3, where the output distribution
of a convolutional layer is plotted. When no regularization
is used, the activations range from -2 to 3. On the other
hand, when regularization is used (αa = 10−3) the weights
are restricted into the appropriate range (-1 to 1) and they
are restrained as the training progresses. The possibility of
training networks that work in even more narrow activation
ranges was also considered and the corresponding results are
reported in Table IV, where different ranges (between 0.8 and
1.1) were used for the evaluation. Note that even though the
error significantly increases when no regularization is used and
the activations are severely constrained (9.97% classification
error), using the proposed activation regularization scheme

TABLE III: Effect of using activation regularization

Reg. Type Reg. weight (αa) Train error (%) Test error (%)

- 0 4.24 4.97

l1 10−6 2.06 2.66
l1 10−5 0.17 0.62
l1 10−4 0.22 0.73
l1 10−3 0.38 0.88

l2 10−6 1.97 2.69
l2 10−5 0.22 0.67
l2 10−4 0.31 0.79
l2 10−3 0.54 0.86

The evaluation was conducted on the MNIST dataset and the “CNN-1”
network on a simulator that supports activations within the range −1 . . . 1.

0 5 10 15 20 25 30 35 40

epoch (x200)

−2

−1

0

1

2

3

Layer: conv1

(a)

0 5 10 15 20 25 30 35 40

epoch (x200)

−2

−1

0

1

2

Layer: conv1

(b)

Fig. 3: Activations distribution for the first convolutional layer
of the “CNN-1” network during the training process without
using regularization (a) and using l2 regularization (b).

TABLE IV: Effect of varying the activation range of the
neurons

Activation range No regularization Activation regularization
(l2, αa = 10−5)

1.1 5.35 0.67
1.0 4.97 0.67
0.9 7.60 0.65
0.8 9.79 0.70

The test classification error of the “CNN-1”(MNIST dataset) is reported (%).

significantly increases the accuracy of the network.
The range of the weights can be similarly constrained using

the weight regularizer presented in Section IV-C. The results
using different weights for the regularizer αw are presented
in Table V. The weights were restricted into the −0.5 . . . 0.5
range (larger weights were clipped during the simulation of
the network) and the training process ran, as before, for 20
epochs. Again, employing regularization seems to improve the
accuracy of the network by allowing it to better adapt to the
used hardware.

Furthermore, the effect of corrupting the activations using
different types of noise (additive Gaussian, multiplicative
Gaussian, additive uniform and multiplicative uniform) is
evaluated in Table VI. Even though typically the AWGN model
is employed for studying the effect of noise in many photonic
components [38], we also considered different types of noise to
demonstrate the ability of the proposed method to successfully
train models that can withstand different types of noise. Any
of the evaluated noise sources can have a devastating effect

8

TABLE V: Effect of varying the weight regularizer (weights
clipped to 0.5) on the MNIST dataset using the “CNN-1”
network

Reg. weight (αw) Train error (%) Test error (%)

0 2.68 3.40

10−4 1.75 2.23
10−3 0.68 1.29
10−2 0.21 0.80
10−1 0.18 0.75
0.5 0.17 0.79

TABLE VI: Effect of using different types of noise on the
layers of the “CNN-1” network

Noise σ/α Regular Training Noisy Training

Gaussian (add., µ = 0) 0.10 1.23 0.98 (1.28)
Gaussian (add., µ = 0) 0.15 2.54 1.23 (1.24)
Gaussian (add., µ = 0) 0.20 5.35 1.43 (1.34)
Gaussian (add., µ = 0) 0.25 35.56 1.59 (1.48)
Gaussian (add., µ = 0) 0.30 43.41 1.91(1.69)

Gaussian (mult., µ = 1) 0.50 2.38 1.85 (4.86)
Gaussian (mult., µ = 1) 0.60 2.76 2.02 (3.21)
Gaussian (mult., µ = 1) 0.70 4.51 2.17 (2.98)
Gaussian (mult., µ = 1) 0.80 8.54 3.06 (3.13)
Gaussian (mult., µ = 1) 0.90 18.20 3.27 (3.26)
Gaussian (mult., µ = 1) 1.00 33.16 3.83 (3.76)

Uniform (add.) 0.10 0.86 0.84 (4.01)
Uniform (add.) 0.20 1.45 1.08 (1.59)
Uniform (add.) 0.30 6.29 1.08 (1.25)
Uniform (add.) 0.40 25.45 1.43 (1.41)
Uniform (add.) 0.50 47.16 1.92 (1.56)

Uniform (mult.) 0.50 1.55 1.15 (7.89)
Uniform (mult.) 1.00 2.75 1.94 (3.91)
Uniform (mult.) 1.50 10.27 2.89 (2.99)
Uniform (mult.) 2.00 68.10 3.32 (3.55)

The MNIST dataset was used for the evaluation. Both the regular training and
the proposed noise-aware training are evaluated. The classification error on
the test set is reported (%). The parameter σ refers to the standard deviation
of the Gaussian noise, while the parameter α refers to the range of the
uniform noise, i.e., [−α, α] for the additive noise and [1 − α, 1 + α] for
the multiplicative noise. The cross-noise classification error, i.e., the error
obtained when the models are evaluated using a different type of noise than
the one on which they were trained on, e.g., training on Gaussian noise and
evaluating on uniform noise, is also reported in parenthesis. The underlined
noise parameter corresponds to the noise used for this cross-noise evaluation.

on the accuracy of the network, especially when its power
is high enough. However, training the network by employing
the proposed noise-aware scheme can significantly increase
its robustness. For example, when very high levels of noise
are used, e.g., additive Gaussian with σ = 0.3 or additive
uniform with α = 0.5, the classification error rises above
40%. However, when the same noise is employed during the
training, which allows the network to adapt to the actual
characteristics of the hardware implementation, the error drops
to below 2%. Furthermore, we also evaluated the performance
of the proposed noisy training approach using an additional
challenging setup. In this setup the model was trained using
a specific type of noise, e.g., Gaussian or uniform, but during
the testing another type of noise, e.g., uniform or Gaussian
(respectively), was used. This setup (cross-noise evaluation)

TABLE VII: Comparing the proposed training approach to
different existing initialization approaches

Dataset Network Xavier [37] He [39] PSI+

MNIST CNN-1 4.20 6.95 0.75
Fashion-MNIST CNN-1 15.42 16.82 11.88
Fashion-MNIST CNN-2 12.94 11.48 7.87
CIFAR10 CNN-2 17.67 22.65 16.91

The classification error (%) on three different datasets (test set) is reported.

TABLE VIII: Evaluation on a high frequency limit order book
dataset

Method F1 Cohen’s κ

Baseline CNN 52.34± 2.39 0.2815± 0.0369

Photonic CNN + Xavier [37] 50.86± 2.58 0.2631± 0.0387
Photonic CNN + Kaiming [39] 50.75± 2.55 0.2612± 0.0393
Photonic CNN + PSI+ 50.98± 2.36 0.2699± 0.0356

aims to evaluate the ability of the trained model to withstand
noise sources which were unknown during the training. These
results are reported in parentheses in Table VI. Again, the
proposed method improves the accuracy of the network over
not using the proposed training approach. Note that the under-
lined noise parameter corresponds to the noise used for this
cross-noise evaluation, e.g., for the additive Gaussian noise the
results reported in parentheses correspond to evaluation with
uniform additive noise with α = 0.30.

Finally, the ability of the proposed methods to tackle all the
aforementioned issues, i.e., activation limits, weights limits
and noise, at the same time is evaluated in Table VII. The
proposed method (PSI combined with the aforementioned
photonic adaptations) is compared to two other well known
initialization approaches, i.e., Xavier [37] and He [39]. The
activation limit was set to umax = 1.1, the weight limit to
wmax = 1, while additive Gaussian noise with σ = 0.05
was used. Several conclusions can be drawn from the results
reported in Table VII. First, note that the Xavier initialization
works better than He in most of the cases. However, neither
of these approaches alone is enough for successfully training
a network that can be deployed on photonic hardware. On
the other hand, when the proposed adaptations are employed,
the performance of the networks is significantly improved,
e.g., for the MNIST dataset the error drops from 6.95% to
0.75%. Similar conclusions can be also drawn for all the
evaluated networks, confirming the importance of adapting
the training process to the characteristics of the actual neu-
romorphic architecture that will be employed. Finally, the
proposed approach was also evaluated on a large scale high
frequency limit order book dataset, the FI-2010 [43], [44],
using the CNN-3 architecture (Table VIII). The first prediction
horizon was used for the evaluation (please refer to [44] for
details regarding the evaluation setup and metrics). Again, the
proposed method allows for improving the prediction precision
over both the Xavier and He initialization, only with minimal
loss of precision compared to a baseline network with the
ReLU activation.

9

VI. CONCLUSIONS AND FUTURE WORK

Photonic hardware has the potential of providing signifi-
cant performance and energy improvements over conventional
hardware for deploying deep learning models. However, di-
rectly deploying a trained neural network into photonic hard-
ware is not possible due to several physical restrictions and
differences between the ideal components and the hardware
actually used for the implementation. The models must be
trained while taking into account the behavior of the physical
components that will be used for the actual implementation.
To the best of our knowledge, this paper presents the first
in-depth study on training deep neural networks that can be
deployed on photonic hardware. However, further research is
needed to answer many questions that arise from this study.
For example, is it possible to directly adapt a trained neural
network for deployment on photonic hardware without training
it from scratch, since training from scratch is computationally
intensive and requires a significant amount of time, especially
for larger datasets. Finally, is it possible to develop and co-
design architectures and activation functions that better fit
the photonic hardware, such as a photonic equivalent of the
ReLU function, that will allow for training even deeper neural
networks, since existing photonic activations are still prune to
vanishing gradient phenomena for deeper architectures?

REFERENCES

[1] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521,
no. 7553, p. 436, 2015.

[2] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proc. of the IEEE Conf. on Computer Vision and Pattern
Recognition, 2016, pp. 770–778.

[3] S. H. Jo, T. Chang, I. Ebong, B. B. Bhadviya, P. Mazumder, and W. Lu,
“Nanoscale memristor device as synapse in neuromorphic systems,”
Nano letters, vol. 10, no. 4, pp. 1297–1301, 2010.

[4] G. Indiveri, B. Linares-Barranco, T. J. Hamilton, A. Van Schaik,
R. Etienne-Cummings, T. Delbruck, S.-C. Liu, P. Dudek, P. Häfliger,
S. Renaud et al., “Neuromorphic silicon neuron circuits,” Frontiers in
neuroscience, vol. 5, p. 73, 2011.

[5] P. A. Merolla, J. V. Arthur, R. Alvarez-Icaza, A. S. Cassidy, J. Sawada,
F. Akopyan, B. L. Jackson, N. Imam, C. Guo, Y. Nakamura et al., “A
million spiking-neuron integrated circuit with a scalable communication
network and interface,” Science, vol. 345, no. 6197, pp. 668–673, 2014.

[6] S. Wen, H. Wei, Z. Zeng, and T. Huang, “Memristive fully convolutional
network: An accurate hardware image-segmentor in deep learning,”
IEEE Transactions on Emerging Topics in Computational Intelligence,
vol. 2, no. 5, pp. 324–334, 2018.

[7] P. Wijesinghe, A. Ankit, A. Sengupta, and K. Roy, “An all-memristor
deep spiking neural computing system: A step toward realizing the
low-power stochastic brain,” IEEE Transactions on Emerging Topics in
Computational Intelligence, vol. 2, no. 5, pp. 345–358, 2018.

[8] X. Shi, Z. Zeng, L. Yang, and Y. Huang, “Memristor-based circuit design
for neuron with homeostatic plasticity,” IEEE Transactions on Emerging
Topics in Computational Intelligence, vol. 2, no. 5, pp. 359–370, 2018.

[9] A. M. Zyarah and D. Kudithipudi, “Neuromorphic architecture for the
hierarchical temporal memory,” IEEE Transactions on Emerging Topics
in Computational Intelligence, vol. 3, no. 1, pp. 4–14, 2019.

[10] N. P. Jouppi, C. Young, N. Patil, D. Patterson, G. Agrawal, R. Bajwa,
S. Bates, S. Bhatia, N. Boden, A. Borchers et al., “In-datacenter
performance analysis of a tensor processing unit,” in Proc. of the Annual
Int. Symposium on Computer Architecture, 2017, pp. 1–12.

[11] Y. Shen, N. C. Harris, S. Skirlo, M. Prabhu, T. Baehr-Jones,
M. Hochberg, X. Sun, S. Zhao, H. Larochelle, D. Englund et al., “Deep
learning with coherent nanophotonic circuits,” Nature Photonics, vol. 11,
no. 7, p. 441, 2017.

[12] K. Vandoorne, P. Mechet, T. Van Vaerenbergh, M. Fiers, G. Morthier,
D. Verstraeten, B. Schrauwen, J. Dambre, and P. Bienstman, “Exper-
imental demonstration of reservoir computing on a silicon photonics
chip,” Nature communications, vol. 5, p. 3541, 2014.

[13] X. Lin, Y. Rivenson, N. T. Yardimci, M. Veli, Y. Luo, M. Jarrahi, and
A. Ozcan, “All-optical machine learning using diffractive deep neural
networks,” Science, vol. 361, no. 6406, pp. 1004–1008, 2018.

[14] A. N. Tait, T. F. Lima, E. Zhou, A. X. Wu, M. A. Nahmias, B. J.
Shastri, and P. R. Prucnal, “Neuromorphic photonic networks using
silicon photonic weight banks,” Scientific Reports, vol. 7, p. 7430, 2017.

[15] C. Yakopcic, R. Hasan, and T. M. Taha, “Memristor based neuromorphic
circuit for ex-situ training of multi-layer neural network algorithms,” in
Proc. of the Int. Joint Conf. on Neural Networks, 2015, pp. 1–7.

[16] E. Hunsberger and C. Eliasmith, “Training spiking deep networks for
neuromorphic hardware,” arXiv preprint arXiv:1611.05141, 2016.

[17] M. Prezioso, F. Merrikh-Bayat, B. Hoskins, G. Adam, K. K. Likharev,
and D. B. Strukov, “Training and operation of an integrated neuromor-
phic network based on metal-oxide memristors,” Nature, vol. 521, no.
7550, p. 61, 2015.

[18] S. K. Esser, R. Appuswamy, P. Merolla, J. V. Arthur, and D. S. Modha,
“Backpropagation for energy-efficient neuromorphic computing,” in
Proc. of the Advances in Neural Information Processing Systems, 2015,
pp. 1117–1125.

[19] T. E. Potok, C. Schuman, S. Young, R. Patton, F. Spedalieri, J. Liu, K.-
T. Yao, G. Rose, and G. Chakma, “A study of complex deep learning
networks on high-performance, neuromorphic, and quantum computers,”
ACM Journal on Emerging Technologies in Computing Systems (JETC),
vol. 14, no. 2, p. 19, 2018.

[20] N. Rathi and K. Roy, “Stdp-based unsupervised multimodal learning
with cross-modal processing in spiking neural network,” IEEE Transac-
tions on Emerging Topics in Computational Intelligence, 2018.

[21] X. Glorot, A. Bordes, and Y. Bengio, “Deep sparse rectifier neural
networks,” in Proc. of the Int. Conf. on Artificial Intelligence and
Statistics, 2011, pp. 315–323.

[22] M. Miscuglio, A. Mehrabian, Z. Hu, S. I. Azzam, J. George, A. V.
Kildishev, M. Pelton, and V. J. Sorger, “All-optical nonlinear activation
function for photonic neural networks,” Optical Materials Express,
vol. 8, no. 12, pp. 3851–3863, 2018.

[23] G. Mourgias-Alexandris, A. Tsakyridis, N. Passalis, A. Tefas, K. Vyr-
sokinos, and N. Pleros, “An all-optical neuron with sigmoid activation
function,” Optics Express, vol. 27, no. 7, pp. 9620–9630, 2019.

[24] S. Pitris, C. Mitsolidou, T. Alexoudi, D. Pérez-Galacho, L. Vivien,
C. Baudot, P. De Heyn, J. Van Campenhout, D. Marris-Morini, and
N. Pleros, “O-band energy-efficient broadcast-friendly interconnection
scheme with sipho mach-zehnder modulator (mzm) & arrayed waveg-
uide grating router (awgr),” in Proc. of the Optical Fiber Communication
Conf., 2018, pp. Th1G–5.

[25] M. Pantouvaki, S. Srinivasan, Y. Ban, P. De Heyn, P. Verheyen,
G. Lepage, H. Chen, J. De Coster, N. Golshani, S. Balakrishnan et al.,
“Active components for 50 gb/s nrz-ook optical interconnects in a silicon
photonics platform,” Journal of Lightwave Technology, vol. 35, no. 4,
pp. 631–638, 2017.

[26] H. Ramon, J. Lambrecht, J. Verbist, M. Vanhoecke, S. A. Srinivasan,
P. De Heyn, J. Van Campenhout, P. Ossieur, X. Yin, and J. Bauwelinck,
“70 gb/s 0.87 pj/bit gesi eam driver in 55 nm sige bicmos,” in Proc. of
the European Conf. on Optical Communication, 2018, pp. 1–3.

[27] J. Lambrecht, H. Ramon, B. Moeneclaey, J. Verbist, P. Ossieur,
P. De Heyn, J. Van Campenhout, J. Bauwelinck, and X. Yin, “56-gb/s sil-
icon optical receiver using a low-noise fully-differential transimpedance
amplifier in sige sicmos,” in Proc. of the European Conf. on Optical
Communication, 2018, pp. 1–3.

[28] L. Danial, N. Wainstein, S. Kraus, and S. Kvatinsky, “Breaking through
the speed-power-accuracy tradeoff in adcs using a memristive neu-
romorphic architecture,” IEEE Transactions on Emerging Topics in
Computational Intelligence, vol. 2, no. 5, pp. 396–409, 2018.

[29] I. Chakraborty, D. Roy, and K. Roy, “Technology aware training in
memristive neuromorphic systems for nonideal synaptic crossbars,”
IEEE Transactions on Emerging Topics in Computational Intelligence,
vol. 2, no. 5, pp. 335–344, 2018.

[30] H. Liang, H. Cheng, J. Wei, L. Zhang, L. Yang, Y. Zhao, and H. Guo,
“Memristive neural networks: A neuromorphic paradigm for extreme
learning machine,” IEEE Transactions on Emerging Topics in Compu-
tational Intelligence, vol. 3, no. 1, pp. 15–23, 2019.

[31] N. Passalis, G. Mourgias-Alexandris, A. Tsakyridis, N. Pleros, and
A. Tefas, “Variance preserving initialization for training deep neuro-
morphic photonic networks with sinusoidal activations,” in Proceedings
of the IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), 2019, pp. 1483–1487.

[32] A. Y. Ng, “Feature selection, l 1 vs. l 2 regularization, and rotational
invariance,” in Proc. of the Int. Conf. on Machine Learning, 2004, p. 78.

[33] S. S. Haykin, Neural networks and learning machines, 2009.

10

[34] S. Han, J. Pool, J. Tran, and W. Dally, “Learning both weights and
connections for efficient neural network,” in Proc. of the Advances in
Neural Information Processing Systems, 2015, pp. 1135–1143.

[35] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhut-
dinov, “Dropout: a simple way to prevent neural networks from overfit-
ting,” Journal of Machine Learning Research, vol. 15, no. 1, pp. 1929–
1958, 2014.

[36] P. Vincent, H. Larochelle, Y. Bengio, and P.-A. Manzagol, “Extracting
and composing robust features with denoising autoencoders,” in Proc.
of the Int. Conf. on Machine learning, 2008, pp. 1096–1103.

[37] X. Glorot and Y. Bengio, “Understanding the difficulty of training deep
feedforward neural networks,” in Proc. of the Int. Conf. on Artificial
Intelligence and Statistics, 2010, pp. 249–256.

[38] R.-J. Essiambre, G. Kramer, P. J. Winzer, G. J. Foschini, and B. Goebel,
“Capacity limits of optical fiber networks,” Journal of Lightwave Tech-
nology, vol. 28, no. 4, pp. 662–701, 2010.

[39] K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep into rectifiers:
Surpassing human-level performance on imagenet classification,” in
Proc. of the IEEE Int. Conf. on Computer Vision, 2015, pp. 1026–1034.

[40] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning
applied to document recognition,” Proc. of the IEEE, vol. 86, no. 11,
pp. 2278–2324, 1998.

[41] H. Xiao, K. Rasul, and R. Vollgraf. (2017) Fashion-mnist: a novel image
dataset for benchmarking machine learning algorithms.

[42] A. Krizhevsky and G. Hinton, “Learning multiple layers of features from
tiny images,” 2009.

[43] A. Ntakaris, M. Magris, J. Kanniainen, M. Gabbouj, and A. Iosifidis,
“Benchmark dataset for mid-price prediction of limit order book data,”
arXiv preprint arXiv:1705.03233, 2017.

[44] N. Passalis, A. Tefas, J. Kanniainen, M. Gabbouj, and A. Iosifidis,
“Temporal bag-of-features learning for predicting mid price movements
using high frequency limit order book data,” IEEE Transactions on
Emerging Topics in Computational Intelligence, 2018.

[45] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv preprint arXiv:1412.6980, 2014.

[46] T. Tieleman and G. Hinton, “Lecture 6.5-rmsprop: Divide the gradient
by a running average of its recent magnitude,” COURSERA: Neural
networks for machine learning, 2012.

Nikolaos Passalis is a postdoctoral researcher at the
Tampere University, Finland. He received the B.Sc.
in Informatics in 2013, the M.Sc. in Information
Systems in 2015 and the Ph.D. degree in Informatics
in 2018, from the Aristotle University of Thessa-
loniki, Greece. He has co-authored 45 journal and
conference papers and contributed one chapter to
one edited book. His research interests include deep
learning, information retrieval and computational
intelligence.

George Mourgias-Alexandris received the B.S. in
Electrical & Computer Engineering in 2016 from
University of Thessaly, Greece. At the beginning
of 2018 he received M.S in Computer System Net-
working from Aristotle University of Thessaloniki,
Greece, where he is currently working toward the
Ph.D. degree. During the summer of 2018 he was a
research intern at the Optics Laboratory of Microsoft
Research, Cambridge, UK, working on optical net-
work technologies for novel designs of regional and
wide area networks. His research interests include

optical communications and optical computing.

Apostolos Tsakyridis received the B.S. degree from
the Department of Electrical and Computer En-
gineering of University of Thessaly in 2016. His
undergraduate thesis concerned the implementation
of optimizing code transformations in a high-level
synthesis compiler. Currently he is a master stu-
dent on Networks Communications and Systems
Architectures in Department of Informatics of the
Aristotle University of Thessaloniki. His research
interests include optical communications, neuromor-
phic photonics and optical memories.

Nikos Pleros joined the faculty of the Department
of Informatics, Aristotle University of Thessaloniki,
Greece, in September 2007, where he is currently
serving as an Assistant Professor. He obtained the
Diploma and the PhD Degree in Electrical & Com-
puter Engineering from the National Technical Uni-
versity of Athens (NTUA) in 2000 and 2004, re-
spectively. His research interests include optical in-
terconnect technologies and architectures, photonic
integrated circuit technologies, optical technologies
for disaggregated data center architectures and high-

performance computing, silicon photonics and plasmonics, optical signal
processing, optical switching, as well as fiber-wireless technologies, network
architectures and protocols for 5G mobile networks. He has more than 250
archival journal publications and conference presentations including several
invited contributions. He has held positions of responsibility at several major
conference committees including ECOC, OFC and SPIE Photonics West. Dr.
Pleros has coordinated several FP7 and H2020 European projects including
ICT-STREAMS, PlasmoFab, RAMPLAS, PLATON and 5G-PHOS, while he
has participated as partner in more than 10 additional projects. He has received
the 2003 IEEE Photonics Society Graduate Student Fellowship granted to 12
PhD candidates world-wide in the field of photonics, while he was proud to
(co-) supervise three more Fellowship winners (Dr. D. Fitsios in 2014, Dr. C.
Vagionas in 2016 and Dr. P. Maniotis in 2017) during their PhD. Dr. Pleros
was also awarded the 15th prize in the Greek Mathematical Olympiad. He
is a member of the IEEE Photonics Society and the IEEE Communications
Society.

Anastasios Tefas received the B.Sc. in informatics
in 1997 and the Ph.D. degree in informatics in 2002,
both from the Aristotle University of Thessaloniki,
Greece. Since 2017 he has been an Associate Pro-
fessor at the Department of Informatics, Aristotle
University of Thessaloniki. From 2008 to 2017, he
was a Lecturer, Assistant Professor at the same
University. From 2006 to 2008, he was an Assistant
Professor at the Department of Information Man-
agement, Technological Institute of Kavala. From
2003 to 2004, he was a temporary lecturer in the

Department of Informatics, University of Thessaloniki. From 1997 to 2002,
he was a researcher and teaching assistant in the Department of Informatics,
University of Thessaloniki. Dr. Tefas participated in 18 research projects
financed by national and European funds. He has co-authored 100 journal
papers, 215 papers in international conferences and contributed 8 chapters to
edited books in his area of expertise. Over 4900 citations have been recorded
to his publications and his H-index is 36 according to Google scholar. His
current research interests include computational intelligence, deep learning,
pattern recognition, statistical machine learning, digital signal and image
analysis and retrieval and computer vision.

