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Abstract 

Non-von-Neumann computing architectures and Deep Learning training models have sparked 

a new computational era where neurons are forming the main architectural backbone and 

vector, matrix and tensor multiplications comprise the basic mathematical toolbox. This 

paradigm shift has triggered a new race among hardware technology candidates; within this 

frame, the field of neuromorphic photonics promises to convolve the targeted algebraic 

portfolio along a computational circuitry with unique speed, para llelization, and energy 

efficiency advantages. Fueled by the inherent energy efficient analog matrix multiply 

operations of optics, the staggering advances of photonic integration and the enhanced 

multiplexing degrees offered by light, neuromorphic photonics has stamped the resurgence of 

optical computing brining a unique perspective in low-energy and ultra -fast linear algebra 

functions. However, the field of neuromorphic photonics has relied so far on two basic 

architectural schemes, i.e., coherent linear optical circuits and incoherent WDM approaches, 

where wavelengths have still not been exploited as a new mathematical dimension. In this 

paper, we present a radically new approach for promoting the synergy of WDM with 

universal linear optics and demonstrate a new, high-fidelity crossbar-based neuromorphic 

photonic platform, able to support matmul with multidimensional operands. Going a step 

further, we introduce the concept of programmable input and weight banks, supporting in situ 

reconfigurability, forming in this way the first WDM-equipped universal linear optical 

operator and demonstrating different operational modes like matrix -by-matrix and vector-by-

tensor multiplication. The benefits of our platform are highlighted in a Fully Convolutional 

Neural Network layout that is responsible for parity identification in the MNIST handwritten 

digit dataset, with physical layer simulations revealing an accuracy of ~94%, degraded by 

only 2% compared to respective results obtained when executed entirely by software. Finally, 

our in-depth analysis provides the guidelines for neuromorphic photonic processor 

performance improvement, revealing along the way that 4-bit quantization is sufficient for 

inputs, whereas the weights can be implemented with as low as 2-bits of precision, offering 

substantial benefits in terms of driving circuitry complexity and energy savings. 
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1. Introduction 

Across diverse spectrum of applications, from object 

recognition and live tracking, Natural Language Processing 

and Generation (NLP and NLG), market dynamics prediction, 

to assistance in medical diagnostics, Deep Learning (DL) has 

offered a pathway to quickly create value from vast data 

repositories [1]. The feedback is positive – the more data is 

made available to the model, the better it will be at analyzing 

it, albeit, at the cost of increased complexity [2]. Looking at 

the NLPs as one of the most demanding use-cases, we are 

witnessing the number of model parameters skyrocketing 

from a shy of a 100 million (ELMo) only recently, in 2018, to 

more than half a trillion (Megatron-Turing NLG) in 2021 [3]. 

Specialized electronic hardware is continuously being 

developed to raise to the challenge of efficiently implementing 

present-day’s DL models, extending from more generic GPUs 

to TPUs and FPGAs up to task-specific ASICs. The success 

of GPUs and TPUs in DL model implementations [4] can be 

attributed to their programmable hardware together with their 

ability to process the data in parallel, which is especially 

important in large-scale matrix multiplication (matmul) 

encountered in many Artificial Intelligence (AI) workloads. 

One of the examples is image recognition and classification, 

where multilayer Convolutional Neural Networks (CNNs) 

demand applying the same kernel time after time during 

feature extraction, a task that greatly benefits from 

parallelization [5]. However, these advances alone do not 

seem to suffice, since, to efficiently tackle any NN 

implementation in practice, a  paradigm shift is required from 

the ubiquitous von-Neumann architectures to in-memory 

computing. 

When designing future-proof neuromorphic solutions, 

simultaneous improvement along three axes should be 

targeted: efficiency, flexibility, and performance. Analog 

crossbars (Xbars) have been found to outperform other 

competitors in this triple-axis optimization path, offering a 

single step matmul operation, and thus being suited for both 

inference and training at both the edge of a computing network 

and in data centers [1]. Having most real-world information 

analog in nature supports the trend of transitioning from 

digital domain to the analog one, especially in the light of 

recent advances in low precision [6] and noise-resilien t  

training algorithms [7]-[11]. The superiority of the electronic 

crossbars has already been recognized by Syntiant  [12], 

MemryX [13] and Mythic [14], with photonic platforms 

striving to produce an equivalent circuit for analog 

neuromorphic photonic setups, as shown by the works of 

Lightmatter [15], [16] and Lightelligence [17], [18] in 

commercial-grade large-scale coherent Photonic Integrated 

Circuits (PICs). 

Photonics, as a naturally analog platform, can offer 

multiple options for parallelization, such as Wavelength- 

(WDM), Mode- (MDM), or Polarization Division  

Multiplexing (PDM) and challenges the supremacy of 

electronics in the field of neuromorphic computing. Recent 

years have brought a great variety of photonic neuromorphic 

prototypes, many of which have been experimentally 

demonstrated primarily for inference purposes [18]-[31], with 

their computational speed (compute rate) per axon shown in  

Figure 1. These have relied on different approaches to achieve 

Multiply-Accumulate (MAC) operations, pushing the 

boundaries of energy and area efficiencies towards a few 

fJ/MAC and beyond TMAC/sec/mm2 [32], [33]. When 

speaking of integrated solutions, two main architectural 

directions can be observed: (i) coherent, which harnesses the 

interference for matmul using a single wavelength and is 

compatible with both optical and Electro-Optical (E/O) 

activations, and (ii) WDM or incoherent, which uses at least 

one different wavelength per axon for computation and 

typically relies on a photodiode (PD) for signal aggregation, 

making it compatible predominantly with E/O activations. 

Regardless of different underlying technologies in 

experimental demonstrations reported in Figure 1, a  clear 

trend can be observed: coherent architectures fall behind the 

WDM or incoherent schemes by orders of magnitude in 

compute rates until 2021, operating at 10s of kHz as opposed 

to 10 GHz achieved by WDM. On the other hand, the speed 

benefit of WDM architectures is shadowed by their poorer 

scaling performance owing to the number of required 

wavelength channels per neuron. The leap in performance of 

coherent architectures reported by our group in 2021 [30], [31] 

stems from redesigning the underlying coherent linear neuron, 

stepping away from the 2×2 Mach-Zehnder Interferometer 

(MZI) meshes that were pioneered by Reck et al. [34] and 

 

Figure 1. Compute rate per axon of WDM (orange circles) 
and coherent (blue triangles) neuromorphic architectures 
demonstrated experimentally within the last 6 years [18]-
[31] and the pathway (green square) to the possible 
performance of the combination of the two. 
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further advanced by Clements et al. [35], towards 1-to-1 

weight mapping via the Optical Linear Algebraic Unit  

(OLAU) [36], [37]. Although employing MZI meshes as core 

units in optical processors does not imply any fundamental 

physical limit on the achievable compute rates, it comes with  

many practical challenges that impose strict requirements on 

the underlying photonic platform, effectively resulting in 10s 

of kHz performance with the present-day technologies. Two 

challenges in particular restrict the practically achievable 

compute rates, as elaborated in [37]: (i) sharp overall Insertion 

Loss (IL) increase with the mesh size and IL per node, 

degrading the Signal-to-Noise Ratio (SNR) at the output, and 

(ii) non-restorable loss- and phase-induced fidelity  

degradation. To remedy the two, high precision phase shifters 

and ultra-low-loss node technologies are mandatory, which  

limits the modulation bandwidth, especially if high bit-

resolutions are targeted. Owing to the excellent Insertion Loss 

(IL) tolerance and restorable fidelity, the OLAU allows 

bypassing the low-IL weighting node constraints typical for 

MZI-mesh design and supports a whole new library of devices 

that can operate in 10s of GHz regime without being affected 

by the associated IL penalty. 

Coherent and incoherent neuromorphic photonic layouts 

have progressed rather independently so far, failing to 

incorporate WDM as a speed acceleration factor as has been 

typically the case in traditional optical systems. Expanding the 

single-neuron single-wavelength OLAU towards multi-

neuron layouts that can also support WDM operation can open 

completely new parallelization perspectives and pave the road 

towards TMAC/sec/axon compute rates, indicated by the 

green bullet in Figure 1. The WDM-enabling credentials of the 

OLAU have been already highlighted in our recent work on 

multichannel coherent photonic neurons [38], where the 

combined use of WDM with an OLAU and simple optical 

switching elements has been shown to create a unique 

programmable Photonic Neural Network (PNN) setup, where 

the same hardware can be used for fully-connected, 

convolutional or multi-neuron NN layers. This work has 

demonstrated that wavelength dependence of the underlying 

photonic components plays marginal role as long as amplitude 

and phase matching is done in the bias branch, theoretically 

limiting the number of employed optical channels to the ratio 

of the bandwidth of the De/Multiplexers (DE/MUXes) and 

channel spacing. 

At the same time, extending the single-wavelength OLAU 

towards a photonic Xbar configuration has been verified to 

support more than one neuron [37], similar to the functionality 

sustained by analog electronic Xbars. Photonic Xbar layout 

has been mathematically validated to support 1-to-1 weight 

mapping over an entire weight matrix, retaining the WDM-

compatible credentials of the elementary OLAU setup. In 

parallel, it exhibits a linear overall IL dependence on the losses 

of its individual weight node technology, enabling in this way 

both loss-optimized designs, as well as higher modulation 

speed weighting blocks. Finally, this Xbar layout allows for 

loss-induced fidelity restoration, providing a unique 

advantage among state-of-the-art universal linear optical 

circuitry in perfectly transferring the targeted matrix into the 

optical experimental domain.  

In terms of analogue processor scaling, the two approaches 

– Singular Value Decomposition (SVD) and Xbar – are 

comparable. Assuming sub-dB node modulation technology 

and a maximum allowed IL of 50 dB along the optical path, 

SVD could scale up to 16×16, given that a Value Dependent 

Loss (VDL) penalty of 6 dB is expected and assuming that 

fidelity of 0.8 can be tolerated in training algorithms [37]. 

Going a step further and assuming an ultra -low-noise 

photodetector (<1 pA/√Hz) opens a possibility to target sizes 

up to 32×32. Transitioning to the digital domain might be 

more forgiving in terms of fidelity but imposes strict  

requirements on SNR as the bit resolution increases. 

Assuming 4-bit operation, an SNR of >26 dB for Symbol-

Error-Rate (SER) below 10-3 is required [39], which allows 

processor sizes of up to 16×16 for >10 dBm input optical 

signal. Xbar offers an advantage in terms of overall IL, which 

stays below 30 dB even for 64×64 matrix and 2 dB per node 

loss [37]. It’s VDL penalty, however, can surpass 20 dB for 

sizes beyond 16 and random inputs and weights. This penalty 

is reduced during the training procedure, allowing the 

processor to reach up to 32×32 size with 4-bit resolution and 

full loss-induced fidelity restoration if the compute rates are 

of the order of 10G. Moving towards 50G operation or 5-bit 

resolution restricts the size to 16×16. 

Merging the two extensions of the OLAU towards 

supporting (i) multiple channels and WDM operation, as 

evidenced in [38] to allow for programmability in PNNs, and 

(ii) multiple spatially separated neurons within a photonic 

Xbar [37], which effectively transform the OLAU into a 

universal linear optical operator, can introduce a new 

performance era for programmable neuromorphic photonics. 

Having high speed input modulation, matmul at the time of 

flight, a  single step weight programming and at the same time 

a universal linear optical operator enriched by WDM parallel 

operation, positions the photonic Xbar as an architecture of 

choice for matrix-by-matrix and vector-by-tensor 

multiplication, as we show in Section 2. In Section 3, we 

highlight its benefits when employed in neuromorphic 

photonic circuit applications by using its single column as an 

NN layer and implementing a  Fully-Convolutional NN 

(FCNN) in photonics domain, performing the MNIST parity 

classification with an accuracy degraded by only 2% 

comparing to the respective value accomplished when 

executed in software. In Section 4, we break down the 

influence of individual components to the overall FCNN 

accuracy and conclude to source, modulator and detector 
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operating conditions, which safeguard the accuracy. Finally, 

in Section 5 we draw the conclusions of our study. 

2. WDM Enhanced Photonic Crossbar: Ultra-High 
Fidelity Programmable Matmul Engine 

Coherent linear optics has been brought to the spotlight in  

recent years in a race to develop a universal multiport 

interferometer, suited for any real and/or complex vector or 

matrix representation in photonic domain [16], [18]-[20], [23], 

[30], [31], [34]-[38], [40]. Such a linear engine should allow 

for vector dot-product or vector-by-matrix multiplication in 

photonic domain and could find applications anywhere from 

neuromorphic to quantum photonics. Majority of the research 

done so far relies on matrix representation via Singular Value 

Decomposition (SVD) and implements the constituent unitary 

matrices via  2×2 MZI meshes, following the proof that these 

can be used as unit cells for experimental realization of any 

discrete unitary operator [34]. Whether in triangular [34], 

rectangular [35] or diamond arrangement [40], they all suffer 

from two major drawbacks that have constrained coherent 

neuron operation to 10 kHz range, as shown in Figure 1. 

Traversing multiple stages of cascaded MZIs leads to IL build-

up, scaling linearly with the matrix size for the shortest path 

and following a square low for the longest one. More 

importantly, on its journey from the input to the output, the 

signal takes multiple paths, effectively “seeing” different 

losses, interfering along the way with other signals that had 

also traveled along the various paths. Even if ideal phase 

control in and out of the MZI is assumed, fidelity is 

irreversibly degraded due to multi-path propagation as long as 

MZI IL is nonzero, which leads to strict requirements for ultra -

low-loss node technologies and ultra-stable phase control. 

In order to ensure that each signal passes a unique path and 

encounters identical loss penalties, we step away from SVD 

matrix implementation and introduce 1-to-1 weight mapping 

via the dual-IQ based OLAU, arranged in a 2D spatial matrix 

as Figure 2(a), (b) reveals [37]. Its loss-balanced layout can 

safeguard the fidelity and opens the possibility to use 

modulators with the bandwidths of 10s of GHz. As Figure 1 

shows, such approach increases compute rate per axon of 

coherent prototypes by orders of magnitude, allowing them to 

compete with WDM-based solutions, while retaining the same 

functionality of vector-by-matrix multiplication at a  single 

wavelength, Figure 2(c). Moreover, Xbar does not require 

preprocessing of the weights that will be applied, as is the case 

with MZI-mesh based solutions, which call for SVD followed 

by unitary matrix factorization [35]. This makes impairments 

easier to detect and prevents their spread over multiple matrix 

elements. Finally, in an effort to avoid coherent detection 

schemes, we introduce a bias branch 

𝑦𝑘 = 𝑏𝑘 +
1

𝑁
∑ 𝑤𝑘,𝑛𝑥𝑛

𝑛=𝑁

𝑛=1

 (1) 

which aids in conversion of sign information from the phase 

of electrical field to its magnitude, making Xbars equally easy 

to combine with all-optical or E/O Activation Units (AUs). In 

(1), k ∈ [1,K] and n ∈ [1,N] denote the column and row indices, 

respectively, xn is the n-th element of the input vector, wk,n is 

the (k,n) element of the weight matrix, bk is the k-th element 

of the bias vector and yk is the k-th element of the output 

vector. The vector/matrix dimensions are spa tial in character 

(N input, row waveguides and K output, column waveguides), 

 

Figure 2. (a) Schematic representation of N×K photonic crossbar, including the OLAU and the bias branch. The OLAU 
consists of 1-to-N splitting stage, a column of N inputs, matrix of N×K weights and the combining stage. The sign 
recovery stage gives the outputs Yk. (b) Equivalent circuits of the input, weight and bias module in case of single-
channel Xbar and (c) the corresponding representation of vector-by-matrix multiplication.  
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implying that in one temporal instance ti, one input vector can 

be processed by being multiplied by a single weight matrix to 

yield a single output vector. 

Striving to use the full potential of photonic platform and 

further boost the throughput, we resort to WDM for extending 

the capabilities of the Xbar beyond one output vector at a time. 

In our recent work on WDM enhanced programmable 

photonic neurons [38], we introduce a concept of input or 

weight sharing by replacing some of the modulators by more 

elaborate modulator banks, enclosed between DEMUX/MUX 

pairs. In this manner, parallel operation of convolutional or 

fully-connected NN layers can be achieved with substantial 

power savings and marginal IL penalty by making use of 

spectral dimension. In other words, in a single temporal 

instant, a  whole matrix of inputs can be processed by 

extending one of its dimensions along the space (different  

input waveguides), and the other dimension along the spectral 

domain (different optical channels), as indicated in Figure 

3(a), or, alternatively, weight tensor can be implemented by 

representing its two dimensions in space (row and column 

waveguides) and the third dimension in spectral domain (each 

channel “sees” different weight matrix), as represented in 

Figure 3(b). Moreover, we show that the impairments coming 

from the wavelength dependent component performance can 

be easily counteracted within the bias branch modulator 

banks. 

Transferring the modulator and/or weight bank principle 

into the photonic Xbar leads to a  WDM boosted universal 

linear operator that allows for a multifunctional multi-neuron 

layout. Replacing the input modulators by modulator banks 

and leaving the Xbar core as it was, as shown in Figure 3(a), 

allows for parallel processing of multiple columns of the input 

matrix simultaneously (at temporal instant ti), effectively 

achieving matrix-by-matrix multiplication (MbMM): 

𝑦𝑘 ,𝑚 = 𝑏𝑘,𝑚 +
1

𝑁
∑ 𝑤𝑘,𝑛𝑥𝑛,𝑚

𝑛=𝑁

𝑛=1

 (2) 

In (2), k ∈ [1,K], n ∈ [1,N] and m ∈ [1,M] denote the column, 

row and channel indices, respectively, xn,m is the n-th element 

of the input vector at m-th wavelength, wk,n is the (k,n) element 

of the weight matrix, which is colorless (all channels pass 

through the modulators in multiplexed form), bk,m is the k-th 

element of the bias vector at m-th wavelength and yk,m is the k-

th element of the output vector at m-th wavelength. Imprinting 

of the input/bias in a wavelength selective manner is achieved 

by demultiplexing the signal prior to modulating each of the 

channels and later multiplexing them together within the 

modulator bank. The dimensions n and k are spatial in 

character (N input waveguides and K output waveguides), 

whereas dimension m represent the spectrum with M channels. 

This implies that input and bias matrices have mixed domains 

(space and spectrum), while weight matrix relies solely on 2D 

space. This mode of operation resembles convolution since 

each input column-vector (all inputs of the same “color”) gets 

filtered by the same weight matrix kernel. 

On the contrary, leaving the input stage as is and replacing 

each weight node by a weight modulator bank, Figure 3(b), 

results in vector-by-tensor multiplication (VbTM) [41]: 

 

Figure 3. WDM enhanced Xbar in (a) shared weight configuration and the resulting matrix-to-matrix multiplication and 
(b) shared input configuration and the resulting vector-by-tensor operation. Modulator banks support M optical 
channels, yielding a throughput proportional to M×N×K. (c) Upgraded, programmable input and weight banks enclosed 
between a pair of dedicated optical switches enabling a unique hardware which performs both MbMM shown in (a) and 
VbTM shown in (b), as well as matrix-by-tensor multiplication (MbTM) according to the switch states listed in table (d). 
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𝑦𝑘 ,𝑚 = 𝑏𝑘,𝑚 +
1

𝑁
∑ 𝑤𝑘,𝑚,𝑛𝑥𝑛

𝑛=𝑁

𝑛=1

 (3) 

where k ∈ [1,K], n ∈ [1,N] and m ∈ [1,M] denote the column, 

row and channel indices, respectively, xn is the n-th element of 

the input vector, which is colorless (all channels pass through 

the modulators in multiplexed form), wk,m,n is the (k,n) element 

of the weight matrix at m-th wavelength, or, equivalently 

(k,m,n) element of the weight tensor, bk,m is the k-th element 

of the bias vector at m-th wavelength and yk,m is the k-th 

element of the output vector at m-th wavelength. As in 

previous case, imprinting the values in a wavelength selective 

manner relies on DE/MUX enclosed bank of single-channel 

modulators. The dimensions n and k are spatial in character (N 

row waveguides and K column waveguides), whereas 

dimension m represent the spectrum with M channels. Input 

vectors remain defined only in spatial domain, whereas 

weights and biases use a mixture, producing a weight tensor 

(2D space with spectrum) and a bias matrix (space and 

spectrum). Described operation resembles a fully-connected 

layer, where, in a single temporal instant ti, the input column 

vector “sees” different matrix slices of the weight tensor, each 

of a different “color”, indexed by m, mapping them to the 

unique column of the output matrix {yk}m. 

Both operations, MbMM and VbTM, are essential for high 

load AI models [42]. The two different MbMM and VbTM 

operational modes can be also offered by a single hardware 

setup by simply incorporating reconfigurability through 

optical switching elements, as shown in Figure 3(c). In this 

layout, the input stage comprises a modulator bank branch [as 

in Figure 3(a)] and an additional single optical modulator 

branch [as in Figure 3(b)], with the choice of the desired path 

controlled via the optical switches encircling the modulators. 

The weighting stage follows the same principle, and it consists 

of a weight bank branch [as in Figure 3(b)] and a single weight  

module branch [as in Figure 3(a)], again forming the two 

discrete connectivity arms between the two switches. 

Depending on the configuration of the switches, tabulated in 

Figure 3(d), multiple modes of operation are supported. 

Setting the two optical switches at the input stage to the bar 

state forces the WDM optical continuous wave (CW) beams 

to enter the modulator bank, while operation of the two optical 

switches at the weighting stage at their cross state directs the 

modulated WDM stream to the common weighting module. 

This configuration effectively implements MbMM, the same 

functionality supported by Figure 3(a). The functionality 

revealed by Figure 3(b), VbTM, can be facilitated by forcing 

the input stage switches to operate in their cross state and the 

weighting stage switches in their bar state, so that the WDM 

CW streams get modulated by the same input signal but later 

enter the weight bank to have every channel multiplied by a 

different weight value. 

Translating the aforementioned concept to the PIC requires 

a choice of appropriate node technology, which will depend 

on targeted application. The constrains for input and weight 

modulators are significantly more relaxed comparing to the 

ultra-low-loss MZIs needed in unitary and SVD architectures, 

as analyzed in detail in [37]. Inputs are typically expected to 

operate at high data rates, making the high bandwidth E/O 

modulation preferrable, whereas the weights typically remain 

fixed in the Feed-Forward (FF) inference application, 

allowing for low-IL Thermo-Optic (T/O) [30], [43] or Phase 

Change Material (PCM) non-volatile optical memory 

technology to be exploited [28], [44], [45]. Compared to the 

single-wavelength photonic Xbar layout analyzed in [37], the 

additional losses experienced by a WDM empowered Xbar 

design account only the IL of an individual MUX/DEMUX 

pair, which can be assumed to have a typical value of 1.5 dB 

per device that is currently supported by Silicon-on-Insulator 

photonic fabrication technology [46]-[48]. 

Figure 4(a) depicts a microscope image of the first 

programmable 4×4 photonic neural network chip, which has 

been recently fabricated in silicon using Si-Ge Electro-

Absorption Modulator (EAM) technology both for its input 

and weighting stage. This chip forms an extension of the 

silicon coherent linear neuron prototype employed recently in 

 

Figure 4. (a) Microscope image of the programmable 
photonic Xbar exploiting Si-Ge EAMs at both input and 
weight banks, supplemented by T/O phase-shifters for 
sign imprinting, embraced by DE/MUXes and configured 
by the switches. (b) Zoom into one node of the Xbar, 
detailing the weight bank and programmability features. 
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MNIST classification experiments with a record-high  

compute rate of 32 GMAC/sec/axon [31], enriched with 

WDM-enabling modules at both its input and weighting stage, 

according to the principles from Figure 3(c), and at the same 

time expanded into a 4×4 Xbar setup. Figure 4(b) shows a 

zoom-in of the programmable 4-channel weighting stage, 

where EAMs are used for the absolute weight value and T/O 

silicon Phase Shifters (PSs) for weight sign imprinting, with  

0/π signifying a positive/negative weight sign. Moreover, the 

switches embracing the weight bank allow the choice between 

a common weight and a channel-wise weighting, seamlessly 

supporting switching between MbMM and VbTM operation. 

Finally, the use of EAMs in weighting stage of the Xbar 

supports in-situ training by guaranteeing the same, >10 GHz 

update rate for both inputs and weights.  

3. Photonic Fully-Convolutional Neural Network 

Stepping away from matrix-by-matrix and vector-by-tensor 

multiplication functionality offered by WDM enhanced Xbar, 

Figure 3, from this point on, we restrict our analysis to its 

single column, still operating with multiple channels, 

showcasing that even under these circumstances, a  

challenging, multi-layer photonic NN can be implemented 

with an excellent accuracy, approaching the limit set by 

software training. For our case-study, we choose an image 

recognition task from a  widely used MNIST benchmark 

dataset [49], [50] and classify the 28×28-pixel hand-written 

digits {0, …, 9} according to their parity using a hybrid 

software-photonic FCNN. The FCNN, schematically shown 

in Figure 5(a), consists of two stages, where the first stage 

comprises two initial software layers that are used for 

extracting a 2-dimensional 3×3 feature map with 8 channels, 

serving as an input to the second stage. Feature extraction in 

the first stage is done by an 8-filter 7×7 kernel size 

convolutional layer with an associated bias, followed by a max 

pooling layer with kernel size 10×10 and a stride of 6. The 

resulting input tensor, defined on the domain ℝ8×3×3, is 

reformatted to an 8×9 matrix and passed to the second stage 

of the FCNN that is implemented via a  PNN and performs 

digit parity identification, outputting 0 if the digit is even and 

1 if it is odd. 

3.1 Photonic NN topology 

Traditionally, convolutional layer is implemented by 

performing either convolution or cross-correlation operation 

of the input with a kernel aiming to extract the feature map, 

which is passed through the nonlinearity, denoted as the 

activation function [51]. Typically, a  classification layer 

follows, giving a label prediction. On the contrary, when 

employing photonics, accompanying limitations and 

constrains arising from the hardware platform itself demand 

restructuring of the FCNN layers to achieve the same 

functionality to that of a  software. 

In the green shaded area of Figure 5(a), we schematically 

show the PNN, composed of two linear layers, each of them 

followed by an O/E/O nonlinear activation, implemented by a 

PD and a transimpedance amplifier (TIA), Figure 5(c). The 

nonlinearity perceived by the first photonic layer corresponds 

to the sine of a squared output, since the TIA output is used 

for driving the input Mach-Zehnder Modulator (MZM) of the 

subsequent layer incorporating in this way also the MZM 

transfer function nonlinearity. At the output of the second 

layer, the nonlinearity is a simple square function, 

representing the transformation of the electrical field 

magnitude to the optica l power recorded by the PD as Figure 

5(c) reveals. Both linear layers rely on building blocks which  

 

Figure 5. (a) Schematic representation of the hybrid software-photonic FCNN with the pink shaded area denoting 
software layers and the green one PNN layers. (b)-(d) Building blocks of a single section of the (b) 1st and (d) 2nd 
photonic layer, with (c) O/E/O activation function located at the output of each layer. (b), (d) Colored hexagons represent 
amplitude modulators (E/O MZMs for input, T/O MZMs for weights), black hexagons represent phase modulators (T/O 
for weights) and white boxes labeled by X and W stand for input and weight modulator banks, a look into which is given 
in Fig. 3(a) and (b), respectively. 
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correspond to a single column of a WDM enhanced Xbar, 

shown in detail in Figures 5(b) and (d), with a distinction that 

the weight banks are used in the first layer (VbTM mode, Fig. 

3(b)) and input banks in the second one (MbMM mode, Fig. 

3(a)). In both cases, the layers are supplied by the multi-

channel (M = 8) multiplexed CW optical signal originating 

either from an array of independent laser diodes (LDs) or, 

alternatively, from an optical frequency comb. 

The first photonic layer is organized in K = 8 sections, each 

with N = 9 inputs, amounting to the dimension of the 

reformatted 8×9 input feature matrix. A single, k-th section, 

detailed in Figure 5(b), accepts an N-element input vector Xk  

= [xk,1,…,xk,N]T, with a single element xk,n, 1 ≤ n ≤ N, which is 

pondered by a wavelength-selective M×N matrix of weights 

via the weight banks, Wk = [wk,1,1,…,wk,1,N;…;wk,M,1,…,wk,M,N], 

with M = 8 corresponding to the number of employed 

wavelengths and consequently, the number of outputs from 

each section. Each output also includes a bias term, imposed 

via the M-element bias branch vector, Bk = [bk,1,…bk,M]T. 

Finally, the m-th output of the k-th section can be determined 

as 

𝑦𝑘 ,𝑚 = 𝑏𝑘,𝑚 +
1

𝑁
∑ 𝑤𝑘,𝑚,𝑛𝑥𝑘,𝑛

𝑛=𝑁

𝑛=1

 (4) 

Accounting for the layer depth of 8 sections, (4) reveals 

matrix (X ∈ ℝ8×9) by tensor (W ∈ ℝ8×8×9) n-mode product 

operation [41], yielding a new matrix (Y ∈ ℝ8×8) as an output. 

The output of the first photonic linear layer is sent to the 

array of photodetectors, each comprising a PD and a  TIA, as 

Figure 5(c) shows. The role of O/E/O conversion is multiple: 

it serves as an interface between the two photonic layers by 

generating an electrical signal that drives the following layer’s 

input modulators, but it also implements a nonlinear activation 

function together with the transfer function of the second 

layer’s input modulator, by converting the electrical field of 

the optical signal to the photocurrent proportional to the 

optical power, i.e., applying a square nonlinearity, which is 

then mapped to the optical signal via the sine transfer function 

of the MZM modulator. Figure 5(a) reveals that each AU 

block takes as an input a single, distinct channel from each 

section of the first layer in a cyclical manner and forwards 

them as an input to the next layer’s branch. Mathematically, 

the transformation can be described as a double circulant-shift, 

first shifting the k-th row of the output by k-1 to the left, and 

then down-shifting the m-th column of the output by m-1, 

yielding the input matrix into the second layer: 

𝑋𝑖𝑛

(2)
= [

𝑦1,1 𝑦𝐾 ,1 … 𝑦2 ,1

𝑦2,2 𝑦1,2 … 𝑦3 ,2

⋮ ⋮ ⋱ ⋮
𝑦𝐾 ,𝑀 𝑦𝐾 −1,𝑀 … 𝑦1,𝑀

] (5) 

where yk,m stands for the output of the k-th section at m-th 

wavelength. 

Shuffling the wavelengths between the two layers enables 

us to apply fast matrix multiplication and backpropagation on 

GPU during software training since this operation is already 

supported by most DL frameworks, but also opens the 

possibility for employing all-optical activations, such as the 

SOA-based sigmoid [52] or the injection-locking based ones 

[53]. It should be noted that, in this case, a  minor modification 

of the second layer is needed, which involves removing the 1-

to-8 splitting stage and making use of the existing weight PSs 

not only to imprint the sign of the weight, but also to regulate 

per-branch phase accumulation which would guarantee the 

appropriate phase difference between the optical signals such 

that they interfere constructively at the combining stage. Input 

modulators can be either omitted or set to operate in 

transparency regime. On the other hand, if training is done 

knowing in advance that no optical AUs will be used, the 

restrictions related to the output shuffling can be eased. 

Returning to the O/E/O activation case, which is shown in  

Figure 5, we recall that the output of the first photonic layer 

was an 8×8 matrix, now used as an input to the second 

photonic layer distributed over 8 branches and 8 wavelength 

channels using input modulator banks, as shown in Figure 

5(d). To achieve classification function, this matrix is filtered  

by a  single 8×1 kernel of weights, yielding an 8×1 output 

vector, with each vector element carried by a distinct 

wavelength. The fina l step assumes joint accumulation of the 

output channels via a single PD, yielding a prediction label on 

whether a digit is even (outputs “0”) or odd (outputs “1”) in a 

similar manner as typical binary On-Off Keying (OOK) 

optical communication channels resolve the bits 0 and 1. This 

method allows us to determine the accuracy of the FCNN both 

by error counting, but also relying on well-known Bit-Error-

Ratio (BER) measurement, calculated from the probability 

density distributions using the target labels. 

3.2 Training and implementation 

The network was trained in a software manner on the 

MNIST dataset, which includes 60.000 training samples and 

10.000 testing samples. More specifically, the network is 

optimized for 100 epochs using RMSprop optimization 

algorithm [54] with learning rate set to 0.0001 and mini-batch 

size equal to 32.  

Although physical properties of the underlying photonics 

hardware, such as limited resolution, noise, extinction ratio or 

bandwidth limitation, were not accounted during the software 

training, constrains were imposed to the ranges of values of 

inputs and parameters (weights and biases). More precisely , 

the inputs were bounded to [0,1], the weights to [-1,1], 

whereas the biases were restricted to [-1,1], such that sign  

integrity of the output field is guaranteed. To compensate the 

effects of such constraints we apply regularization terms to the 

employed binary cross entropy loss to exploit the intrinsic  

ability of NNs to accumulate such limitations through 
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backpropagation. To this end, the network is optimized to 

eliminate values that cannot be applied during the hardware 

inference using the following loss function: 

𝐽 ′(𝑦, 𝑦) = 𝐽(𝑦, 𝑦) + ∑ ∑ min{|𝑤𝑖 ,𝑗| − 1,0}

𝑚

𝑗=0

𝑛

𝑖 =0

+ ∑ ∑ min{|𝑏𝑖,𝑗| − 1,0}

𝑚

𝑗 =0

𝑛

𝑖=0

 

(6) 

where 𝐽(𝑦, 𝑦) = 𝑦 log 𝑦 + (1 − 𝑦) log(1 − 𝑦) denotes the 

binary cross-entropy loss, y and 𝑦 are the targets and predicted 

values respectively, while m is the number of neurons in i-th 

photonic layer. 

The PyTorch [55] DL learning framework is used to offline 

train the networks and the photonic network itself is later 

deployed in VPIphotonics Design Suite (VPI) environment 

[56], achieving, respectively, 95.9% and 95.8% evaluation 

accuracy, highlighting the benefits of such co-simulation 

design. 

4. Results and discussion 

Performance evaluation of the FCNN through physical 

layer simulation in VPI environment is organized in 5 stages: 

(i) loading of the parameters obtained by software training, 

namely, input matrices fed into the first photonic layer, target 

labels for accuracy estimation after the second layer, as well 

as weights and biases for both photonic layers; (ii) physical 

implementation of the first photonic layer; (iii) inter-layer 

activation and channel shuffling stage; (iv) physical 

implementation of the second photonic layer followed by an 

AU; (v) performance evaluation and error detection stage. 

Input CW seed signal for each of the layers is generated via a 

designated laser bank, consisting of M = 8 LDs centered at the 

100 GHz C-band DWDM grid, covering the range [194.0, 

194.7] THz. We note here that the WDM-enhanced Xbar as a 

whole, as well as its exemplary FCNN implementa tion, is 

compatible with arbitrary wavelength range, including O-

band. The performance will ultimately depend on the 

performance of individual photonic components, both passive 

(waveguides, splitters/combiners, DE/MUXes) and active 

(laser source(s), amplitude and phase modulators, 

photodetectors). Having photonic technology mature in both 

bands guarantees good performance per channel. Lasers are 

nominally emitting 19 dBm of optical power in the first and 

10 dBm in the second laser bank. Having the first bank 

supplying 8 sections, as opposed to the second bank which  

supplies only one, Figure 5(a), raises a penalty of 9 dB in the 

first case, which brings the CW seed signals at the same power 

level of 10 dBm at the input of each section, be it in  the first 

or the second layer. 

Input, weight, and bias values coming from software 

training are mapped from the domains outlined in Section 3.2 

to the appropriate voltages using Analog-to-Digital Converter 

(ADC) with finite bit resolution. As shown in Figure 5(b) and 

(d), photonic layers are operating in different regimes, first  

one having common inputs and wavelength selective weights, 

and the second one vice-versa. Inputs are imprinted using E/O 

MZMs with finite Extinction Ratio (ER) and IL. We assume 

that the MZM driver’s transfer function can be approximated 

by the low-pass Bessel filter of the 1st order, consequently 

imposing restriction on the input signal bandwidth, resulting 

in finite raise and fall times. Demonstrating inference 

application allows for T/O MZMs and PSs to be used as 

weights, both of which have finite IL, and the former also 

finite ER. We assume all modulators are realized in Si 

technology and exhibit wavelength dependent behavior when 

shared among multiple channels. This effect is compensated 

by PSs in the bias branch, as detailed in [38]. Moreover, we 

introduce an additional Variable Optical Attenuator (VOA) in 

the bias branch which matches the excess attenuation seen by 

the signal in the OLAU and guarantees the appropriate bias 

signal level for conversion of the sign from the phase to the 

field magnitude. For signal multiplexing and demultiplexing 

Arrayed Waveguide Gratings (AWGs) are used with finite IL 

and crosstalk (CT). To account for additional noise sources 

not captured by the existing components, we include a variable 

Optical Signal to Noise Ratio (OSNR) module, allowing us to 

increase the content of the noise in the system in a controllable 

manner. 

Table 1. Simulation parameters for ideal, optimistic and 
realistic case. 

parameter unit ideal optimistic realistic 

X Bit Res.  64† 8 4 

X MZM ER dB 30 20 8 

X MZM IL dB 0 4 

X MZM BW GHz 20 8 

W Bit Res.  64† 8 3 

W MZM ER dB 30 20 12 

W MZM IL dB 0 1 

W PS IL dB 0 1 

DE/MUX IL dB 0 1.5 

DE/MUX CT dB 70 30 20 

PD dark current nA 0 40 

PD BW GHz 20 8 

TIA noise pA/Hz1/2 0 20 

TIA BW GHz 20 8 

OSNR dB 300 30 25 

Abbreviations: X: input, W: weight, MZM: Mach-Zehnder 

modulator, PS: phase shifter, Bit Res.: bit resolution, ER: 

extinction ratio, IL: insertion loss, BW: bandwidth, 

DE/MUX: de/multiplexer, CT: crosstalk, PD: photodiode, 

TIA: transimpedance amplifier, OSNR: optical signal-to-

noise ratio 
† Limited by the floating-point number representation. 
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The same AU is used after both photonic layers, as shown 

in Figure 5(c), including a PD of the responsivity 1 A/W 

followed by a TIA, both of which have finite bandwidth, 

modeled by a low-pass Bessel filter of the 1st order. The 

nominal impedance of the TIA is 400 Ω in the absence of IL 

of the employed photonic components throughout the setup. 

When finite IL exists, impedance increases proportionally to 

compensate accumulated losses and guarantee the required 

voltage range at the input of the second photonic layer. 

Finally, after the detection stage, symbol error probability 

is measured to determine the FCNN accuracy. Two 

approaches are adopted, namely, error counting and BER 

estimation based on the probability density distributions of the 

two output labels – 0 and 1. The second approach allows to 

estimate the expected error when a longer test sequence is used 

then the one provided by the MNIST dataset. 

In all simulation runs the data rate is set to 10 GBd with 256 

samples/symbol, guaranteeing that all impairments will be 

captured in the resulting waveform. We note that such high  

sampling rate is selected only to mimic the analog nature of 

the signal that exists in practice, while the sampling at the 

detector side would require no more than 2 samples per 

symbol to resolve the amplitude. The parameters used in the 

simulations are included in Table 1. 

The network testing was carried out for three different 

physical layer specification sets, with the two first sets having 

the role of defining the baseline framework and the third set 

evaluating the network performance under realistic 

conditions. Initially the system was tested under almost ideal 

physical layer conditions in order to evaluate the system’s 

performance in comparison to the results obtained when 

executed entirely in the software domain. The corresponding 

physical layer parameter value-set is summarized under the 

ideal column of Table 1. As a  next step, two different cases 

were studied where multiple limitations were gradually 

introduced in the network, representing more realistic 

systems. The respective physical layer parameter values are 

presented in the last two columns of Table 1, named as 

optimistic and realistic. The main difference between the 

optimistic and realistic cases concerns the assumption of 

improved operational settings with respect to input and weight 

bit resolution, extinction ratio, DE/MUX crosstalk and OSNR 

penalty in the optimistic case, which may be eventually 

feasible only through additional advances in PIC fabrication 

platforms. On the contrary, the realistic case takes into 

account respective parameter values that have been already 

accomplished by state-of-the-art silicon photonic fabrication 

platforms, offering in this way an indication of its practical 

perspectives even within the current technological framework.  

4.1 Results on Parity Identification in MNIST dataset 

Figure 6 shows the results for the three analyzed cases with 

the parameters reported in Table 1. Looking at the waveforms 

at the output of the second layer reported in Figure 6(a), a  very 

good agreement between the three cases can be observed, even 

though the degradation occurs when moving from the ideal to 

the realistic case, as expected. Introducing the cumulative IL 

penalty of 12 dB in optimistic and realistic case brings the 

signal amplitude down by approximately an order of 

magnitude in comparison to the ideal one, whereas the finite 

ER of the input and weight modulators reduces the signal’s 

 

Figure 6. (a) Waveforms of the signals leaving the second photonic layer for the ideal (left-hand axis) and optimistic  
and realistic set of parameters (right-hand axis). (b)-(d) Probability density distributions for the labels 0 and 1, together 
with the decision threshold and the respective errors (D – distribution, C – counting) for (b) ideal, (c) optimistic and (d) 
realistic case. (e) Confusion matrixes for three analyzed cases demonstrating the probability of correct vs. erroneous 
digit classification according to parity. 
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modulation depth. The combined influence of finite ER, 

bandwidth, and low bit resolution, makes some of the 

amplitude levels indistinguishable, as can be observed in the 

range of [2.8, 3.1] ns and [3.6, 3.9] ns. However, the overall 

shape of the waveform is well preserved even under realistic 

circumstances. 

Probability density distributions reported in Figure 6(b)-(d) 

agree with the waveforms from Figure 6(a), revealing that the 

Gaussians describing the two levels, 0 for even and 1 for odd, 

remain well defined for all three cases, although the overlap 

increases going from ideal, Figure 6(b), to realistic case, 

Figure 6(d), as anticipated. The reduction in amplitude, as well 

as the modulation depth, is also observed in Figure 6(b)-(d), 

but probability density distributions still leave enough room 

for a threshold to be established yielding the error probabilities 

of [3.3, 6.5, 7.1] % for the three cases. Comparing to the errors 

determined by counting, [4.2, 5.3, 6.1] %, the trend is well 

captured and can be reliably used for estimating the FCNN 

performance for a  longer test sequence. Standard deviation of 

the label 1 is somewhat larger than the one corresponding to 

label 0 in ideal case, even though they are comparable. This 

asymmetry vanishes moving towards optimistic and realistic 

cases, implying that the noise and nonlinearities distribute 

evenly between the two labels. 

To get a better, per-digit parity prediction overview, we 

report the confusion matrix in Figure 6(e) for all three 

analyzed cases, revealing the percentage of true/false label 

prediction. We note that digits did not have the same 

frequency of appearing, so the errors reported in Figure 6(e) 

do not enter with the same weight in the overall error reported 

in Figure 6(b)-(d). Nevertheless, Figure 6(e) still gives an 

indication where the improvement can be done for future 

FCNN implementations. It can be observed that some digits 

are universally easy for classification (e.g., 0 and 7), whereas 

some remain challenging even in the ideal case (e.g., 3, 4 and 

9). The error typically increases when moving from ideal to 

any of the other two cases, with a very few exceptions (3, 7) 

that can be attributed to the test sequence not being long 

enough. 

4.2 Network Performance Analysis 

To better understand the origin of performance degradation 

in realistic case as opposed to the optimistic one, we study 

individual contributions of some common imperfections 

and/or penalties seen by the optical signal in the PNN, 

choosing BER as a figure of merit. In what follows, unless 

otherwise stated, all parameters in the physical 

implementation of the FCNN are set to optimistic values from 

Table 1. 

Figure 7(a) shows BER dependence on insertion loss 

penalty introduced in the system immediately following the 

laser banks. We study three different cases, where the loss is 

imposed to the input signal for each of the layers individually 

(first – L1; second – L2) and both combined (L1+L2). Results 

reveal L1 is more resilient than L2, offering a margin of 4 dB 

for the same error of 7% and approximately 3 dB for the error 

of 8%. This can be attributed to the modulation loss which is 

accumulated as we traverse from one layer to another and to 

the change in the input value probability distribution between 

the two layers. Assuming initial inputs to the first photonic 

layer and parameters of both layers (weights and biases) are 

uniformly distributed on their respective ranges introduces a 3 

dB-penalty per amplitude modulator, accumulating to 

approximately 6 dB at the output of the L1. More importantly, 

the sum of the products of uniformly distributed quantities on 

the ranges specified in Section 3.2 approaches to Gaussian 

probability distribution at the first layer’s output, which acts 

as a penalty to the modulation depth of the second layer’s 

input, since majority of the values will be clustered around the 

distribution’s mean. Unlike the modulation loss penalty which 

may be counteracted by TIAs to a certain degree, the change 

in distribution will remain. Such penalty reflects adversely on 

the final BER, requiring higher PD sensitivities in the second 

layer, or, alternatively, sufficient optical power to resolve the 

levels of 0 and 1. When IL is introduced in both layers, a  

cumulative effect can be observed, implying that the errors in 

two layers are uncorrelated, which is expected since the 

weight and bias values are imposed independently. 

Reducing the extinction ratio below 10 dB raises the BER 

by 0.5%, from 6.5 to 7% as Figure 7(b) reveals, regardless of 

the modulator in question – input or weight. Both act similarly 

in terms of error penalty. Nevertheless, from a practical 

standpoint, input modulator is somewhat more critical since 

 

Figure 7. FCNN error rate versus (a) insertion loss penalty 
introduced in layer 1 (L1), layer 2 (L2) and both layers (L1 
+ L2), (b) extinction ratio for input (E/O) and weight (T/O) 
modulators, (c) TIA’s thermal noise for two CW input 
optical powers, 10 and 2 dBm, and (d) bit resolution of 
inputs and weights. 



Neuromorphic Computing and Engineering XX (XXXX) XXXXXX Author et al  

 12  
 

high-speed modulators, such as EAM, may not currently be 

able to support ERs beyond 8 dB, limiting the performance of 

the PNN. 

Introducing the TIA noise at the detection stage, Figure 

7(c), plays marginal role as long as the optical power reaching 

the PNN is high enough, which is also confirmed by the 

smooth waveforms shown in Figure 6(a). Reducing the laser 

power reveals the increase in error penalty coming from TIA 

noise. 

Finally, we explore the impact that limited bit-resolution of 

the driving signal has on BER. Figure 7(d) shows that both 

weights and inputs can be driven with no more than 4 bits 

without the loss in accuracy, complying with the commonly 

quoted guideline for PNN implementation, which additionally 

relaxes energy and area requirements [33]. Reducing the 

weight amplitude resolution even to 2 bits still yields excellent 

results, which is in agreement with the trend of low-precision  

training algorithms [6]. However, the inputs prove to be more 

sensitive, which can be attributed to the effective reduction in 

the modulation depth due to probability distribution 

transformation from the first to the second layer, imposing 

stricter requirements for resolving two close analog levels. 

It is worth noting that many of the limitations encountered  

in the PNN can be eventually alleviated by enforcing a 

hardware-aware DL training framework where the training 

algorithm incorporates the physical layer limitations of the 

underlying photonic hardware a priori in the training process 

[8], [9]. Accounting for quantization (limited bit resolution)  

[10], [11], limited ER or bandwidth has already been 

demonstrated as a viable solution for performance upgrade 

[8], [9]. 

5. Conclusions 

Aiming to blend the two architectural approaches favored 

by neuromorphic photonics – WDM (or incoherent) and 

coherent, we show how wavelength domain can be exploited 

for achieving parallel operation of the coherent photonic 

crossbar, relying on 1-to-1 weight matrix mapping pioneered 

by our group, opening a path toward TMAC/sec/axon 

performance. Enclosing the input and weight banks between 

optical switching elements, we introduce programmability 

feature to our system, offering a single photonic platform that 

can tackle various matmul operations between the operands of 

different dimensions, always striving for energy conservation 

and maximum efficiency for a given task. We demonstrate 

how such platform can be used in inference task by realizing 

multilayer photonic neural network and benchmarking its 

performance against MNIST dataset in digit parity recognition  

task. Our results show that the accuracy degradation compared 

to software one is only 2 %, without making the training 

algorithm aware of the underlying photonic hardware. 

Following a detailed performance study of the fully-

convolutional neural network, we identify that 4-bit resolution 

is sufficient for inputs, whereas the weights can be quantized 

with as low as 2-bit accuracy without significant degradation 

in network’s performance. Finally, we present the guidelines 

for modulator specifications in terms of extinction ratio, as 

well as the system as a whole in terms of overall insertion loss 

that safeguard the high-accuracy performance. 
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